Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Biomedicines ; 12(6)2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38927487

ABSTRACT

Currently, obesity is a critical global public health burden. Numerous studies have demonstrated the regulation of the pathogenesis of obesity and metabolic abnormalities by the gut microbiota and microbial factors; however, their involvement in the various degrees of obesity is not yet well understood. Previously, obesity has been shown to be associated with decreased levels of vitamin B12. Considering exclusive microbial production of vitamin B12, we hypothesized that a decrease in cobalamin levels in obese individuals may be at least partially caused by its depleted production in the intestinal tract by the commensal microbiota. In the present study, our aim was to estimate the abundance of enzymes and metabolic pathways for vitamin B12 synthesis in the gut microbiota of mouse models of alimentary and genetically determined obesity, to evaluate the contribution of the obesogenic microbiome to vitamin B12 synthesis in the gut. We have defined a significantly lower predicted abundance of enzymes and metabolic pathways for vitamin B12 biosynthesis in obese mice compared to non-obese mice, wherein enzyme depletion was more pronounced in lepr(-/-) (db/db) mice, which developed severe obesity. The predicted abundance of enzymes involved in cobalamin synthesis is strongly correlated with the representation of several microbes in high-fat diet-fed mice, while there were almost no correlations in db/db mice. Therefore, the degree of obesity and the composition of the correspondent microbiota are the main contributors to the representation of genes and pathways for cobalamin biosynthesis in the mouse gut.

2.
Int J Mol Sci ; 25(12)2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38928317

ABSTRACT

Imbalanced nutrition, such as a high-fat/high-carbohydrate diet, is associated with negative effects on human health. The composition and metabolic activity of the human gut microbiota are closely related to the type of diet and have been shown to change significantly in response to changes in food content and food supplement administration. Alkylresorcinols (ARs) are lipophilic molecules that have been found to improve lipid metabolism and glycemic control and decrease systemic inflammation. Furthermore, alkylresorcinol intake is associated with changes in intestinal microbiota metabolic activity. However, the exact mechanism through which alkylresorcinols modulate microbiota activity and host metabolism has not been determined. In this study, alterations in the small intestinal microbiota (SIM) and the large intestinal microbiota (LIM) were investigated in mice fed a high-fat diet with or without pentadecylresorcinol (C15) supplementation. High-throughput sequencing was applied for jejunal and colonic microbiota analysis. The results revealed that C15 supplementation in combination with a high-fat diet could decrease blood glucose levels. High-throughput sequencing analysis indicated that C15 intake significantly increased (p < 0.0001) the abundance of the probiotic bacteria Akkermansia muciniphila and Bifidobacterium pseudolongum in both the small and large intestines and increased the alpha diversity of LIM (p < 0.05), but not SIM. The preliminary results suggested that one of the mechanisms of the protective effects of alkylresorcinol on a high-fat diet is the modulation of the content of SIM and LIM and metabolic activity to increase the probiotic bacteria that alleviate unhealthy metabolic changes in the host.


Subject(s)
Akkermansia , Diet, High-Fat , Dietary Supplements , Gastrointestinal Microbiome , Resorcinols , Animals , Diet, High-Fat/adverse effects , Resorcinols/pharmacology , Mice , Gastrointestinal Microbiome/drug effects , Akkermansia/drug effects , Male , Mice, Inbred C57BL , Intestine, Small/drug effects , Intestine, Small/microbiology , Intestine, Small/metabolism
3.
Int J Mol Sci ; 24(18)2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37762509

ABSTRACT

Alkylresorcinols (ARs) are polyphenolic compounds with a wide spectrum of biological activities and are potentially involved in the regulation of host metabolism. The present study aims to establish whether ARs can be produced by the human gut microbiota and to evaluate alterations in content in stool samples as well as metabolic activity of the gut microbiota of C57BL, db/db, and LDLR (-/-) mice according to diet specifications and olivetol (5-n-pentylresorcinol) supplementation to estimate the regulatory potential of ARs. Gas chromatography with mass spectrometric detection was used to quantitatively analyse AR levels in mouse stool samples; faecal microbiota transplantation (FMT) from human donors to germ-free mice was performed to determine whether the intestinal microbiota could produce AR molecules; metagenome sequencing analysis of the mouse gut microbiota followed by reconstruction of its metabolic activity was performed to investigate olivetol's regulatory potential. A significant increase in the amounts of individual members of AR homologues in stool samples was revealed 14 days after FMT. Supplementation of 5-n-Pentylresorcinol to a regular diet influences the amounts of several ARs in the stool of C57BL/6 and LDLR (-/-) but not db/db mice, and caused a significant change in the predicted metabolic activity of the intestinal microbiota of C57BL/6 and LDLR (-/-) but not db/db mice. For the first time, we have shown that several ARs can be produced by the intestinal microbiota. Taking into account the dependence of AR levels in the gut on olivetol supplementation and microbiota metabolic activity, AR can be assumed to be potential quorum-sensing molecules, which also influence gut microbiota composition and host metabolism.

4.
Inflamm Bowel Dis ; 27(3): 418-433, 2021 02 16.
Article in English | MEDLINE | ID: mdl-32766755

ABSTRACT

BACKGROUND: Several studies have highlighted the role of host-microbiome interactions in the pathogenesis of inflammatory bowel disease (IBD), resulting in an increasing amount of data mainly focusing on Western patients. Because of the increasing prevalence of IBD in newly industrialized countries such as those in Asia, the Middle East, and South America, there is mounting interest in elucidating the gut microbiota of these populations. We present a comprehensive analysis of several IBD-related biomarkers and gut microbiota profiles and functions of a unique population of patients with IBD and healthy patients from Kazan (Republic of Tatarstan, Russia). METHODS: Blood and fecal IBD biomarkers, serum cytokines, and fecal short-chain fatty acid (SCFA) content were profiled. Finally, fecal microbiota composition was analyzed by 16S and whole-genome shotgun sequencing. RESULTS: Fecal microbiota whole-genome sequencing confirmed the presence of classic IBD dysbiotic features at the phylum level, with increased abundance of Proteobacteria, Actinobacteria, and Fusobacteria and decreased abundance of Firmicutes, Bacteroidetes, and Verrucomicrobia. At the genus level, the abundance of both fermentative (SCFA-producing and hydrogen (H2)-releasing) and hydrogenotrophic (H2-consuming) microbes was affected in patients with IBD. This imbalance was confirmed by the decreased abundance of SCFA species in the feces of patients with IBD and the change in anaerobic index, which mirrors the redox status of the intestine. CONCLUSIONS: Our analyses highlighted how IBD-related dysbiotic microbiota-which are generally mainly linked to SCFA imbalance-may affect other important metabolic pathways, such as H2 metabolism, that are critical for host physiology and disease development.


Subject(s)
Dysbiosis , Fatty Acids, Volatile , Gastrointestinal Microbiome , Inflammatory Bowel Diseases , Dysbiosis/ethnology , Feces , Humans , Inflammatory Bowel Diseases/ethnology , Tatarstan
SELECTION OF CITATIONS
SEARCH DETAIL
...