Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Microorganisms ; 12(2)2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38399750

ABSTRACT

In the 1980s, Escherichia coli was the preferred host for heterologous protein expression owing to its capacity for rapid growth in complex media; well-studied genetics; rapid and direct transformation with foreign DNA; and easily scalable fermentation. Despite the relative ease of use of E. coli for achieving the high expression of many recombinant proteins, for some proteins, e.g., membrane proteins or proteins of eukaryotic origin, this approach can be rather ineffective. Another microorganism long-used and popular as an expression system is baker's yeast, Saccharomyces cerevisiae. In spite of a number of obvious advantages of these yeasts as host cells, there are some limitations on their use as expression systems, for example, inefficient secretion, misfolding, hyperglycosylation, and aberrant proteolytic processing of proteins. Over the past decade, nontraditional yeast species have been adapted to the role of alternative hosts for the production of recombinant proteins, e.g., Komagataella phaffii, Yarrowia lipolytica, and Schizosaccharomyces pombe. These yeast species' several physiological characteristics (that are different from those of S. cerevisiae), such as faster growth on cheap carbon sources and higher secretion capacity, make them practical alternative hosts for biotechnological purposes. Currently, the K. phaffii-based expression system is one of the most popular for the production of heterologous proteins. Along with the low secretion of endogenous proteins, K. phaffii efficiently produces and secretes heterologous proteins in high yields, thereby reducing the cost of purifying the latter. This review will discuss practical approaches and technological solutions for the efficient expression of recombinant proteins in K. phaffii, mainly based on the example of enzymes used for the feed industry.

2.
Int J Mol Sci ; 24(24)2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38139225

ABSTRACT

Group-specific component macrophage-activating factor (GcMAF) is the vitamin D3-binding protein (DBP) deglycosylated at Thr420. The protein is believed to exhibit a wide range of therapeutic properties associated with the activation of macrophagal immunity. An original method for GcMAF production, DBP conversion to GcMAF, and the analysis of the activating potency of GcMAF was developed in this study. Data unveiling the molecular causes of macrophage activation were obtained. GcMAF was found to interact with three CLEC10A derivatives having molecular weights of 29 kDa, 63 kDa, and 65 kDa. GcMAF interacts with high-molecular-weight derivatives via Ca2+-dependent receptor engagement. Binding to the 65 kDa or 63 kDa derivative determines the pro- and anti-inflammatory direction of cytokine mRNA expression: 65 kDa-pro-inflammatory (TNF-α, IL-1ß) and 63 kDa-anti-inflammatory (TGF-ß, IL-10). No Ca2+ ions are required for the interaction with the canonical 29 kDa CLEC10A. Both forms, DBP protein and GcMAF, bind to the 29 kDa CLEC10A. This interaction is characterized by the stochastic mRNA synthesis of the analyzed cytokines. Ex vivo experiments have demonstrated that when there is an excess of GcMAF ligand, CLEC10A forms aggregate, and the mRNA synthesis of analyzed cytokines is inhibited. A schematic diagram of the presumable mechanism of interaction between the CLEC10A derivatives and GcMAF is provided. The principles and elements of standardizing the GcMAF preparation are elaborated.


Subject(s)
Macrophage-Activating Factors , Macrophages , Vitamin D-Binding Protein , Anti-Inflammatory Agents , Macrophage-Activating Factors/metabolism , Macrophages/metabolism , RNA, Messenger , Humans , Vitamin D-Binding Protein/metabolism
3.
J Integr Bioinform ; 20(3)2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37978847

ABSTRACT

Bacillus strains are ubiquitous in the environment and are widely used in the microbiological industry as valuable enzyme sources, as well as in agriculture to stimulate plant growth. The Bacillus genus comprises several closely related groups of species. The rapid classification of these remains challenging using existing methods. Techniques based on MALDI-TOF MS data analysis hold significant promise for fast and precise microbial strains classification at both the genus and species levels. In previous work, we proposed a geometric approach to Bacillus strain classification based on mass spectra analysis via the centroid method (CM). One limitation of such methods is the noise in MS spectra. In this study, we used a denoising autoencoder (DAE) to improve bacteria classification accuracy under noisy MS spectra conditions. We employed a denoising autoencoder approach to convert noisy MS spectra into latent variables representing molecular patterns in the original MS data, and the Random Forest method to classify bacterial strains by latent variables. Comparison of the DAE-RF with the CM method using the artificially noisy test samples showed that DAE-RF offers higher noise robustness. Hence, the DAE-RF method could be utilized for noise-robust, fast, and neat classification of Bacillus species according to MALDI-TOF MS data.


Subject(s)
Bacillus , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Bacteria
4.
Metabolites ; 13(6)2023 Jun 19.
Article in English | MEDLINE | ID: mdl-37367925

ABSTRACT

Determination of chemotypes and of their role in the polymorphism of populations is an important field in the research on secondary metabolites of plants. In the present study, by gas chromatography coupled with mass spectrometry, the composition of bark extracts from rowan S. aucuparia subsp. sibirica was determined for 16 trees growing within Akademgorodok of Novosibirsk, with bark samples collected both in winter and summer. Among 101 fully or partially identified metabolites, there are alkanes, alkenes, linear alcohols, fatty acids and their derivatives, phenols and their derivatives, prunasin and its parent and derivative compounds, polyprenes and their derivatives, cyclic diterpenes, and phytosterols. These compounds were grouped according to their biosynthesis pathways. Cluster analysis revealed two groups among the bark samples collected in winter and three groups among bark samples collected in summer. The key determinants of this clustering are the biosynthesis of metabolites via the cyanogenic pathway (especially potentially toxic prunasin) and their formation via the phytosterol pathway (especially potentially pharmacologically useful lupeol). It follows from the results that the presence of chemotypes having sharply different profiles of metabolites in a population from a small geographic area invalidates the practice of general sampling to obtain averaged data when a population is described. From the standpoint of possible industrial use or plant selection based on metabolomic data, it is possible to select specific sets of samples containing a minimal amount of potentially toxic compounds and the largest amount of potentially useful substances.

5.
Int J Mol Sci ; 23(23)2022 Dec 02.
Article in English | MEDLINE | ID: mdl-36499542

ABSTRACT

Studying the effects of terahertz (THz) radiation on the proteome of temperature-sensitive organisms is limited by a number of significant technical difficulties, one of which is maintaining an optimal temperature range to avoid thermal shock as much as possible. In the case of extremophilic species with an increased temperature tolerance, it is easier to isolate the effects of THz radiation directly. We studied the proteomic response to terahertz radiation of the thermophilic Geobacillus icigianus, persisting under wide temperature fluctuations with a 60 °C optimum. The experiments were performed with a terahertz free-electron laser (FEL) from the Siberian Center for Synchrotron and Terahertz Radiation, designed and employed by the Institute of Nuclear Physics of the SB of the RAS. A G. icigianus culture in LB medium was THz-irradiated for 15 min with 0.23 W/cm2 and 130 µm, using a specially designed cuvette. The life cycle of this bacterium proceeds under conditions of wide temperature and osmotic fluctuations, which makes its enzyme systems stress-resistant. The expression of several proteins was shown to change immediately after fifteen minutes of irradiation and after ten minutes of incubation at the end of exposure. The metabolic systems of electron transport, regulation of transcription and translation, cell growth and chemotaxis, synthesis of peptidoglycan, riboflavin, NADH, FAD and pyridoxal phosphate cofactors, Krebs cycle, ATP synthesis, chaperone and protease activity, and DNA repair, including methylated DNA, take part in the fast response to THz radiation. When the response developed after incubation, the systems of the cell's anti-stress defense, chemotaxis, and, partially, cell growth were restored, but the respiration and energy metabolism, biosynthesis of riboflavin, cofactors, peptidoglycan, and translation system components remained affected and the amino acid metabolism system was involved.


Subject(s)
Geobacillus , Terahertz Radiation , Proteomics , Citric Acid Cycle
6.
Int J Mol Sci ; 23(15)2022 Aug 05.
Article in English | MEDLINE | ID: mdl-35955874

ABSTRACT

Xylanases (EC 3.2.1.8) hydrolyze the hemicellulose of plant cell walls. Xylanases are used in the food and paper industries and for bioconversion of lignocellulose to biofuel. In this work, the producer-strain with four copies of the xAor xylanase gene was organized in two tandem copies for optimal expression in Komagataella phaffii T07 yeast. The secreted 35 kDa xylanase was purified from culture medium by gel filtration on Sephadex G-25 and anion exchange chromatography on DEAE-Sepharose 6HF. Tryptic peptides of the recombinant enzyme were analyzed by liquid chromatography-tandem mass spectrometry where the amino acid sequence corresponded to Protein Accession # O94163 for Endo-1,4-beta-xylanase from Aspergillus oryzae RIB40. The recombinant xylanase was produced in a bioreactor where the secreted enzyme hydrolyzed oat xylane with an activity of 258240 IU/mL. High activity in the culture medium suggested xylanase could be used for industrial applications without being purified or concentrated. The pH optimum for xylanase xAor was 7.5, though the enzyme was active from pH 2.5 to pH 10. Xylanase was active at temperatures from 35 °C to 85 °C with a maximum at 60 °C. In conclusion, this protocol yields soluble, secreted xylanase suitable for industrial scale production.


Subject(s)
Aspergillus oryzae , Saccharomycetales , Amino Acid Sequence , Aspergillus oryzae/genetics , Endo-1,4-beta Xylanases/metabolism , Enzyme Stability , Hydrogen-Ion Concentration , Saccharomycetales/metabolism , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...