Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Database
Language
Publication year range
1.
Membranes (Basel) ; 13(2)2023 Jan 26.
Article in English | MEDLINE | ID: mdl-36837660

ABSTRACT

The photosynthetic reaction center of the purple bacterium Cereibacter sphaeroides with two site-directed mutations Ile-L177-His and M197 Phe-His is of double interest. The substitution I(L177)H results in strong binding of a bacteriochlorophyll molecule with L-subunit. The second mutation F(M197)H introduces a new H-bond between the C2-acetyl carbonyl group of the bacteriochlorophyll PB and His-M197, which is known to enhance the stability of the complex. Due to this H-bond, π -electron system of P finds itself connected to an extensive H-bonding network on the periplasmic surface of the complex. The crystal structure of the double mutant reaction center obtained with 2.6 Å resolution allows clarifying consequences of the Ile L177 - His substitution. The value of the P/P+ midpoint potential in the double mutant RC was found to be ~20 mV less than the sum of potentials measured in the two RCs with single mutations I(L177)H and F(M197)H. The protein environment of the BChls PA and BB were found to be similar to that in the RC with single substitution I(L177)H, whereas an altered pattern of the H-bonding networks was found in the vicinity of bacteriochlorophyll PB. The data obtained are consistent with our previous assumption on a correlation between the bulk of the H-bonding network connected with the π-electron system of the primary electron donor P and the value of its oxidation potential.

2.
Biochemistry (Mosc) ; 87(10): 1149-1158, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36273883

ABSTRACT

In the structure of photosynthetic reaction center (RC) of the purple bacterium Cereibacter sphaeroides the highly conserved amino acid residue Ile-M206 is located near the bacteriochlorophyll dimer P, which is the primary electron donor, and the monomeric bacteriochlorophyll BA, which is the nearest electron acceptor. Since Ile-M206 is close to the C2-acetyl group of bacteriochlorophyll PB, the hydroxyl group of Tyr-M210, and to the C9-keto group of bacteriochlorophyll BA, as well as to the water molecule near the latter group, this site can be used for introducing mutations in order to study mechanisms of primary photochemical processes in the RC. Previously it was shown that the Ile→Glu substitution at the M204 position (analog of M206 in the RC of C. sphaeroides) in the RC of the closely related purple non-sulfur bacterium Rhodobacter capsulatus significantly affected kinetics of the P+HA- state formation, whereas the M204 Ile→Gln substitution led to the loss of BChl BA molecule from the complex structure. In the present work, it is shown that the single I(M206)Q or double I(M206)Q + F(M208)A amino acid substitutions in the RC of C. sphaeroides do not change the pigment composition and do not markedly influence redox potential of the primary electron donor. However, substitution of Ile M206 by Gln affected positions and amplitudes of the absorption bands of bacteriochlorophylls, increased lifetime of the primary electron donor P* excited state from 3.1 ps to 22 ps, and decreased quantum yield of the P+QA- state formation to 60%. These data suggest significant changes in the pigment-protein interactions in the vicinity of the primary electron donor P and the nearest electron acceptor BA. A considerable decrease was also noticed in the resistance of the mutant RC to thermal denaturation, which was more pronounced in the RC with the double substitution I(M206)Q + F(M208)A. This was likely associated with the disruption of the dense packing of the protein near bacteriochlorophylls PB and BA. Possible reasons for different effects of identical mutations on the properties of two highly homologous RCs from closely related purple non-sulfur bacteria are discussed.


Subject(s)
Photosynthetic Reaction Center Complex Proteins , Rhodobacter sphaeroides , Photosynthetic Reaction Center Complex Proteins/metabolism , Bacteriochlorophylls/chemistry , Rhodobacter sphaeroides/genetics , Rhodobacter sphaeroides/metabolism , Kinetics , Amino Acids/metabolism , Water/metabolism , Electron Transport
3.
Photosynth Res ; 154(2): 207-223, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36070062

ABSTRACT

We present here a tribute to one of the foremost biophysicists of our time, Vladimir Anatolievich Shuvalov, who made important contributions in bioenergetics, especially on the primary steps of conversion of light energy into charge-separated states in both anoxygenic and oxygenic photosynthesis. For this, he and his research team exploited pico- and femtosecond transient absorption spectroscopy, photodichroism & circular dichroism spectroscopy, light-induced FTIR (Fourier-transform infrared) spectroscopy, and hole-burning spectroscopy. We remember him for his outstanding leadership and for being a wonderful mentor to many scientists in this area. Reminiscences by many [Suleyman Allakhverdiev (Russia); Robert Blankenship (USA); Richard Cogdell (UK); Arvi Freiberg (Estonia); Govindjee Govindjee (USA); Alexander Krasnovsky, jr, (Russia); William Parson (USA); Andrei Razjivin (Russia); Jian- Ren Shen (Japan); Sergei Shuvalov (Russia); Lyudmilla Vasilieva (Russia); and Andrei Yakovlev (Russia)] have included not only his wonderful personal character, but his outstanding scientific research.

4.
Biochemistry (Mosc) ; 86(4): 517-524, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33941072

ABSTRACT

Photosynthetic reaction center (RC) of the purple bacterium Rhodobacter sphaeroides is one of the most well-studied transmembrane pigment-protein complexes. It is a relatively stable protein with established conditions for its isolation from membranes, purification, and storage. However, it has been shown that some amino acid substitutions can affect stability of the RC, which results in a decrease of the RCs yield during its isolation and purification, disturbs spectral properties of the RCs during storage, and can lead to sample heterogeneity. To optimize conditions for studying mutant RCs, the effect of various detergents and osmolytes on thermal stability of the complex was examined. It was shown that trehalose and, to a lesser extent, sucrose, maltose, and hydroxyectoin at 1 M concentration slow down thermal denaturation of RCs. Sodium cholate was found to have significant stabilizing effect on the structure of native and genetically modified RCs. The use of sodium cholate as a detergent has several advantages and can be recommended for the storage and investigation of the unstable mutant membrane complexes of purple bacteria in long-term experiments.


Subject(s)
Amino Acid Substitution , Photosynthetic Reaction Center Complex Proteins/chemistry , Rhodobacter sphaeroides/metabolism , Sodium Cholate/chemistry , Trehalose/chemistry , Detergents/chemistry , Hot Temperature , Maltose/chemistry , Mutation, Missense , Osmolar Concentration , Photosynthetic Reaction Center Complex Proteins/genetics , Photosynthetic Reaction Center Complex Proteins/isolation & purification , Photosynthetic Reaction Center Complex Proteins/metabolism , Protein Conformation , Sucrose/chemistry
5.
Photosynth Res ; 146(1-3): 109-121, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32125564

ABSTRACT

In photosynthetic reaction centers (RCs) of purple bacteria, conserved histidine residues [His L173 and His M202 in Rhodobacter (Rba.) sphaeroides] are known to serve as fifth axial ligands to the central Mg atom of the bacteriochlorophyll (BChl) molecules (PA and PB, respectively) that constitute the homodimer (BChl/BChl) primary electron donor P. In a number of previous studies, it has been found that replacing these residues with leucine, which cannot serve as a ligand to the Mg ion of BChl, leads to the assembly of heterodimer RCs with P represented by the BChl/BPheo pair. Here, we show that a homodimer P is assembled in Rba. sphaeroides RCs if the mutation H(M202)L is combined with the mutation of isoleucine to histidine at position M206 located in the immediate vicinity of PB. The resulting mutant H(M202)L/I(M206)H RCs are characterized using pigment analysis, redox titration, and a number of spectroscopic methods. It is shown that, compared to wild-type RCs, the double mutation causes significant changes in the absorption spectrum of the P homodimer and the electronic structure of the radical cation P+, but has only minor effect on the pigment composition, the P/P+ midpoint potential, and the initial electron-transfer reaction. The results are discussed in terms of the nature of the axial ligand to the Mg of PB in mutant H(M202)L/I(M206)H RCs and the possibility of His M202 participation in the previously proposed through-bond route for electron transfer from the excited state P* to the monomeric BChl BA in wild-type RCs.


Subject(s)
Photosynthetic Reaction Center Complex Proteins/metabolism , Rhodobacter sphaeroides/metabolism , Bacteriochlorophylls/metabolism , Dimerization , Electron Transport , Electrons , Histidine/genetics , Mutation , Oxidation-Reduction
6.
Photosynth Res ; 125(1-2): 23-9, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25480338

ABSTRACT

New histidine residue was introduced in M196 position in the reaction center of Rhodobacter sphaeroides in order to alter polarity of the BChl dimer's protein environment and to study how it affects properties and structure of the primary electron donor P. It was shown that in the absorption spectrum of the mutant RC the 6 nm red shift of the Q Y P band was observed together with considerable decrease of its amplitude. The mid-point potential of P/P (+) in the mutant RC was increased by +65 (±15) mV as compared to the E m P/P (+) value in the wild-type RC suggesting that the mutation resulted in new pigment-protein interactions. Crystal structure of RC L(M196)H determined at 2.4 Å resolution implies that BChl Р В and introduced histidine-M196 organize new electrostatic contact that may be specified either as π-π staking or as hydrogen-π interaction. Besides, the structure of the mutants RC shows that His-M196 apparently became involved in hydrogen bond network existing in BChl Р В vicinity that may favor stability of the mutant RC.


Subject(s)
Bacteriochlorophylls/metabolism , Photosynthetic Reaction Center Complex Proteins/metabolism , Rhodobacter sphaeroides/metabolism , Bacteriochlorophylls/chemistry , Crystallography, X-Ray , Histidine , Hydrogen Bonding , Models, Structural , Mutagenesis, Site-Directed , Mutation , Photosynthetic Reaction Center Complex Proteins/chemistry , Spectrum Analysis , Static Electricity
7.
Photosynth Res ; 98(1-3): 81-93, 2008.
Article in English | MEDLINE | ID: mdl-18853274

ABSTRACT

The purpose of the review is to show that the tetrameric (bacterio)chlorophyll ((B)Chl) structures in reaction centers of photosystem II (PSII) of green plants and in bacterial reaction centers (BRCs) are similar and play a key role in the primary charge separation. The Stark effect measurements on PSII reaction centers have revealed an increased dipole moment for the transition at approximately 730 nm (Frese et al., Biochemistry 42:9205-9213, 2003). It was found (Heber and Shuvalov, Photosynth Res 84:84-91, 2005) that two fluorescent bands at 685 and 720 nm are observed in different organisms. These two forms are registered in the action spectrum of Q(A) photoreduction. Similar results were obtained in core complexes of PSII at low temperature (Hughes et al., Biochim Biophys Acta 1757: 841-851, 2006). In all cases the far-red absorption and emission can be interpreted as indication of the state with charge transfer character in which the chlorophyll monomer plays a role of an electron donor. The role of bacteriochlorophyll monomers (B(A) and B(B)) in BRCs can be revealed by different mutations of axial ligand for Mg central atoms. RCs with substitution of histidine L153 by tyrosine or leucine and of histidine M182 by leucine (double mutant) are not stable in isolated state. They were studied in antennaless membrane by different kinds of spectroscopy including one with femtosecond time resolution. It was found that the single mutation (L153HY) was accompanied by disappearance of B(A) molecule absorption near 802 nm and by 14-fold decrease of photochemical activity measured with ms time resolution. The lifetime of P(870)* increased up to approximately 200 ps in agreement with very low rate of the electron transfer to A-branch. In the double mutant L153HY + M182HL, the B(A) appears to be lost and B(B) is replaced by bacteriopheophytin Phi(B) with the absence of any absorption near 800 nm. Femtosecond measurements have revealed the electron transfer to B-branch with a time constant of approximately 2 ps. These results are discussed in terms of obligatory role of B(A) and Phi(B) molecules located near P for efficient electron transfer from P*.


Subject(s)
Bacteriochlorophylls/metabolism , Energy Metabolism , Light , Photosystem II Protein Complex/metabolism , Bacteria/metabolism , Photosynthesis , Plants/metabolism
8.
J Bioinform Comput Biol ; 6(4): 643-66, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18763734

ABSTRACT

Transient absorption difference spectroscopy with approximately 20 femtosecond (fs) resolution was applied to study the time and spectral evolution of low-temperature (90 K) absorbance changes in isolated reaction centers (RCs) of Chloroflexus (C.) aurantiacus. In RCs, the composition of the B-branch chromophores is different with respect to that of purple bacterial RCs by occupying the B(B) binding site of accessory bacteriochlorophyll by bacteriopheophytin molecule (Phi(B)). It was found that the nuclear wave packet motion induced on the potential energy surface of the excited state of the primary electron donor P* by approximately 20 fs excitation leads to a coherent formation of the states P+Phi(B)(-) and P+B(A)(-) (B(A) is a bacteriochlorophyll monomer in the A-branch of cofactors). The processes were studied by measuring coherent oscillations in kinetics of the absorbance changes at 900 nm and 940 nm (P* stimulated emission), at 750 nm and 785 nm (Phi(B) absorption bands), and at 1,020-1028 nm (B(A)(-) absorption band). In RCs, the immediate bleaching of the P band at 880 nm and the appearance of the stimulated wave packet emission at 900 nm were accompanied (with a small delay of 10-20 fs) by electron transfer from P* to the B-branch with bleaching of the Phi(B) absorption band at 785 nm due to Phi(B)(-) formation. These data are consistent with recent measurements for the mutant HM182L Rb. sphaeroides RCs (Yakovlev et al., Biochim Biophys Acta 1757:369-379, 2006). Only at a delay of 120 fs was the electron transfer from P* to the A-branch observed with a development of the B(A)(-) absorption band at 1028 nm. This development was in phase with the appearance of the P* stimulated emission at 940 nm. The data on the A-branch electron transfer in C. aurantiacus RCs are consistent with those observed in native RCs of Rb. sphaeroides. The mechanism of charge separation in RCs with the modified B-branch pigment composition is discussed in terms of coupling between the nuclear wave packet motion and electron transfer from P* to Phi(B) and B(A) primary acceptors in the B-branch and A-branch, respectively.


Subject(s)
Chloroflexus/chemistry , Chloroflexus/radiation effects , Photosynthetic Reaction Center Complex Proteins/chemistry , Photosynthetic Reaction Center Complex Proteins/radiation effects , Dose-Response Relationship, Radiation , Electron Transport , Light , Radiation Dosage
9.
FEBS Lett ; 581(30): 5769-73, 2007 Dec 22.
Article in English | MEDLINE | ID: mdl-18036346

ABSTRACT

In this work, we report the unique case of bacteriochlorophyll (BChl) - protein covalent attachment in a photosynthetic membrane complex caused by a single mutation. The isoleucine L177 was substituted by histidine in the photosynthetic reaction center (RC) of Rhodobacter sphaeroides. Pigment analysis revealed that one BChl molecule was missing in the acetone-methanol extract of the I(L177)H RCs. SDS-PAGE demonstrated that this BChl molecule could not be extracted with organic solvents apparently because of its stable covalent attachment to the mutant RC L-subunit. Our data indicate that the attached bacteriochlorophyll is one of the special pair BChls, P(A). The chemical nature of this covalent interaction remains to be identified.


Subject(s)
Amino Acid Substitution , Bacteriochlorophylls/metabolism , Histidine/genetics , Isoleucine/genetics , Photosynthetic Reaction Center Complex Proteins/metabolism , Protein Subunits/metabolism , Rhodobacter sphaeroides/metabolism , Electron Transport , Electrophoresis, Polyacrylamide Gel , Models, Molecular , Photosynthetic Reaction Center Complex Proteins/chemistry , Photosynthetic Reaction Center Complex Proteins/isolation & purification , Pigments, Biological/metabolism , Protein Binding , Spectrophotometry , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL