Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2023 May 20.
Article in English | MEDLINE | ID: mdl-37292633

ABSTRACT

Our data previously revealed that chemosurviving cancer cells translate specific genes. Here, we find that the m6A-RNA-methyltransferase, METTL3, increases transiently in chemotherapy-treated breast cancer and leukemic cells in vitro and in vivo. Consistently, m6A increases on RNA from chemo-treated cells, and is needed for chemosurvival. This is regulated by eIF2α phosphorylation and mTOR inhibition upon therapy treatment. METTL3 mRNA purification reveals that eIF3 promotes METTL3 translation that is reduced by mutating a 5'UTR m6A-motif or depleting METTL3. METTL3 increase is transient after therapy treatment, as metabolic enzymes that control methylation and thus m6A levels on METTL3 RNA, are altered over time after therapy. Increased METTL3 reduces proliferation and anti-viral immune response genes, and enhances invasion genes, which promote tumor survival. Consistently, overriding phospho-eIF2α prevents METTL3 elevation, and reduces chemosurvival and immune-cell migration. These data reveal that therapy-induced stress signals transiently upregulate METTL3 translation, to alter gene expression for tumor survival.

2.
Sci Adv ; 8(43): eabo1304, 2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36306353

ABSTRACT

Quiescent leukemic cells survive chemotherapy, with translation changes. Our data reveal that FXR1, a protein amplified in several aggressive cancers, is elevated in quiescent and chemo-treated leukemic cells and promotes chemosurvival. This suggests undiscovered roles for this RNA- and ribosome-associated protein in chemosurvival. We find that FXR1 depletion reduces translation, with altered rRNAs, snoRNAs, and ribosomal proteins (RPs). FXR1 regulates factors that promote transcription and processing of ribosomal genes and snoRNAs. Ribosome changes in FXR1-overexpressing cells, including RPLP0/uL10 levels, activate eIF2α kinases. Accordingly, phospho-eIF2α increases, enabling selective translation of survival and immune regulators in FXR1-overexpressing cells. Overriding these genes or phospho-eIF2α with inhibitors reduces chemosurvival. Thus, elevated FXR1 in quiescent or chemo-treated leukemic cells alters ribosomes that trigger stress signals to redirect translation for chemosurvival.

3.
PLoS Pathog ; 18(4): e1010401, 2022 04.
Article in English | MEDLINE | ID: mdl-35363834

ABSTRACT

Polyomaviruses (PyV) are ubiquitous pathogens that can cause devastating human diseases. Due to the small size of their genomes, PyV utilize complex patterns of RNA splicing to maximize their coding capacity. Despite the importance of PyV to human disease, their transcriptome architecture is poorly characterized. Here, we compare short- and long-read RNA sequencing data from eight human and non-human PyV. We provide a detailed transcriptome atlas for BK polyomavirus (BKPyV), an important human pathogen, and the prototype PyV, simian virus 40 (SV40). We identify pervasive wraparound transcription in PyV, wherein transcription runs through the polyA site and circles the genome multiple times. Comparative analyses identify novel, conserved transcripts that increase PyV coding capacity. One of these conserved transcripts encodes superT, a T antigen containing two RB-binding LxCxE motifs. We find that superT-encoding transcripts are abundant in PyV-associated human cancers. Together, we show that comparative transcriptomic approaches can greatly expand known transcript and coding capacity in one of the simplest and most well-studied viral families.


Subject(s)
BK Virus , Polyomavirus Infections , Polyomavirus , BK Virus/genetics , Humans , Polyomavirus/genetics , Polyomavirus Infections/genetics , RNA Splicing , Simian virus 40/genetics
4.
Mol Cell ; 81(19): 4041-4058.e15, 2021 10 07.
Article in English | MEDLINE | ID: mdl-34624217

ABSTRACT

Deregulation of oncogenic signals in cancer triggers replication stress. Immediate early genes (IEGs) are rapidly and transiently expressed following stressful signals, contributing to an integrated response. Here, we find that the orphan nuclear receptor NR4A1 localizes across the gene body and 3' UTR of IEGs, where it inhibits transcriptional elongation by RNA Pol II, generating R-loops and accessible chromatin domains. Acute replication stress causes immediate dissociation of NR4A1 and a burst of transcriptionally poised IEG expression. Ectopic expression of NR4A1 enhances tumorigenesis by breast cancer cells, while its deletion leads to massive chromosomal instability and proliferative failure, driven by deregulated expression of its IEG target, FOS. Approximately half of breast and other primary cancers exhibit accessible chromatin domains at IEG gene bodies, consistent with this stress-regulatory pathway. Cancers that have retained this mechanism in adapting to oncogenic replication stress may be dependent on NR4A1 for their proliferation.


Subject(s)
Breast Neoplasms/metabolism , Cell Proliferation , Immediate-Early Proteins/metabolism , Mitosis , Neoplastic Cells, Circulating/metabolism , Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism , 3' Untranslated Regions , Animals , Antineoplastic Agents/pharmacology , Binding Sites , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Proliferation/drug effects , Chromatin Assembly and Disassembly , Female , Gene Expression Regulation, Neoplastic , Genomic Instability , HEK293 Cells , Humans , Immediate-Early Proteins/genetics , Indoles/pharmacology , MCF-7 Cells , Mice, Inbred NOD , Mice, SCID , Mitosis/drug effects , Neoplastic Cells, Circulating/drug effects , Neoplastic Cells, Circulating/pathology , Nuclear Receptor Subfamily 4, Group A, Member 1/antagonists & inhibitors , Nuclear Receptor Subfamily 4, Group A, Member 1/genetics , Phenylacetates/pharmacology , Proto-Oncogene Proteins c-fos/genetics , Proto-Oncogene Proteins c-fos/metabolism , R-Loop Structures , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , Signal Transduction , Transcription Elongation, Genetic , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
5.
Nat Commun ; 11(1): 2834, 2020 06 05.
Article in English | MEDLINE | ID: mdl-32503981

ABSTRACT

Recruitment of DNA repair proteins to DNA damage sites is a critical step for DNA repair. Post-translational modifications of proteins at DNA damage sites serve as DNA damage codes to recruit specific DNA repair factors. Here, we show that mRNA is locally modified by m5C at sites of DNA damage. The RNA methyltransferase TRDMT1 is recruited to DNA damage sites to promote m5C induction. Loss of TRDMT1 compromises homologous recombination (HR) and increases cellular sensitivity to DNA double-strand breaks (DSBs). In the absence of TRDMT1, RAD51 and RAD52 fail to localize to sites of reactive oxygen species (ROS)-induced DNA damage. In vitro, RAD52 displays an increased affinity for DNA:RNA hybrids containing m5C-modified RNA. Loss of TRDMT1 in cancer cells confers sensitivity to PARP inhibitors in vitro and in vivo. These results reveal an unexpected TRDMT1-m5C axis that promotes HR, suggesting that post-transcriptional modifications of RNA can also serve as DNA damage codes to regulate DNA repair.


Subject(s)
DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Breaks, Double-Stranded , Homologous Recombination , RNA Processing, Post-Transcriptional/genetics , RNA, Messenger/metabolism , Animals , Cell Line, Tumor , Cytosine/metabolism , DNA (Cytosine-5-)-Methyltransferases/genetics , Drug Resistance, Neoplasm/genetics , Gene Knockdown Techniques , Humans , Methylation , Mice , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/pathology , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , RNA, Small Interfering/metabolism , Rad51 Recombinase/metabolism , Rad52 DNA Repair and Recombination Protein/metabolism , Xenograft Model Antitumor Assays
6.
Genome Biol ; 21(1): 33, 2020 02 10.
Article in English | MEDLINE | ID: mdl-32039742

ABSTRACT

BACKGROUND: Quiescence (G0) is a transient, cell cycle-arrested state. By entering G0, cancer cells survive unfavorable conditions such as chemotherapy and cause relapse. While G0 cells have been studied at the transcriptome level, how post-transcriptional regulation contributes to their chemoresistance remains unknown. RESULTS: We induce chemoresistant and G0 leukemic cells by serum starvation or chemotherapy treatment. To study post-transcriptional regulation in G0 leukemic cells, we systematically analyzed their transcriptome, translatome, and proteome. We find that our resistant G0 cells recapitulate gene expression profiles of in vivo chemoresistant leukemic and G0 models. In G0 cells, canonical translation initiation is inhibited; yet we find that inflammatory genes are highly translated, indicating alternative post-transcriptional regulation. Importantly, AU-rich elements (AREs) are significantly enriched in the upregulated G0 translatome and transcriptome. Mechanistically, we find the stress-responsive p38 MAPK-MK2 signaling pathway stabilizes ARE mRNAs by phosphorylation and inactivation of mRNA decay factor, Tristetraprolin (TTP) in G0. This permits expression of ARE mRNAs that promote chemoresistance. Conversely, inhibition of TTP phosphorylation by p38 MAPK inhibitors and non-phosphorylatable TTP mutant decreases ARE-bearing TNFα and DUSP1 mRNAs and sensitizes leukemic cells to chemotherapy. Furthermore, co-inhibiting p38 MAPK and TNFα prior to or along with chemotherapy substantially reduces chemoresistance in primary leukemic cells ex vivo and in vivo. CONCLUSIONS: These studies uncover post-transcriptional regulation underlying chemoresistance in leukemia. Our data reveal the p38 MAPK-MK2-TTP axis as a key regulator of expression of ARE-bearing mRNAs that promote chemoresistance. By disrupting this pathway, we develop an effective combination therapy against chemosurvival.


Subject(s)
AU Rich Elements , Drug Resistance, Neoplasm , RNA Processing, Post-Transcriptional , Tristetraprolin/metabolism , Animals , Cell Cycle , Cells, Cultured , Dual Specificity Phosphatase 1/genetics , Dual Specificity Phosphatase 1/metabolism , Hep G2 Cells , Humans , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , K562 Cells , MCF-7 Cells , Mice , Mice, Inbred C57BL , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Proteome/genetics , Proteome/metabolism , THP-1 Cells , Transcriptome , Tristetraprolin/genetics , Tumor Necrosis Factor-alpha/metabolism , p38 Mitogen-Activated Protein Kinases/genetics , p38 Mitogen-Activated Protein Kinases/metabolism
7.
Science ; 367(6485): 1468-1473, 2020 03 27.
Article in English | MEDLINE | ID: mdl-32029688

ABSTRACT

Circulating tumor cells (CTCs) are shed into the bloodstream from primary tumors, but only a small subset of these cells generates metastases. We conducted an in vivo genome-wide CRISPR activation screen in CTCs from breast cancer patients to identify genes that promote distant metastasis in mice. Genes coding for ribosomal proteins and regulators of translation were enriched in this screen. Overexpression of RPL15, which encodes a component of the large ribosomal subunit, increased metastatic growth in multiple organs and selectively enhanced translation of other ribosomal proteins and cell cycle regulators. RNA sequencing of freshly isolated CTCs from breast cancer patients revealed a subset with strong ribosome and protein synthesis signatures; these CTCs expressed proliferation and epithelial markers and correlated with poor clinical outcome. Therapies targeting this aggressive subset of CTCs may merit exploration as potential suppressors of metastatic progression.


Subject(s)
Breast Neoplasms/pathology , Neoplasm Metastasis , Neoplastic Cells, Circulating/pathology , Ribosomal Proteins/genetics , Animals , Breast Neoplasms/genetics , CRISPR-Cas Systems , Cell Line, Tumor , Female , Gene Expression Regulation, Neoplastic , Humans , Mice , Neoplasm Transplantation , Sequence Analysis, RNA
8.
Nat Commun ; 11(1): 164, 2020 01 09.
Article in English | MEDLINE | ID: mdl-31919360

ABSTRACT

Host dependency factors that are required for influenza A virus infection may serve as therapeutic targets as the virus is less likely to bypass them under drug-mediated selection pressure. Previous attempts to identify host factors have produced largely divergent results, with few overlapping hits across different studies. Here, we perform a genome-wide CRISPR/Cas9 screen and devise a new approach, meta-analysis by information content (MAIC) to systematically combine our results with prior evidence for influenza host factors. MAIC out-performs other meta-analysis methods when using our CRISPR screen as validation data. We validate the host factors, WDR7, CCDC115 and TMEM199, demonstrating that these genes are essential for viral entry and regulation of V-type ATPase assembly. We also find that CMTR1, a human mRNA cap methyltransferase, is required for efficient viral cap snatching and regulation of a cell autonomous immune response, and provides synergistic protection with the influenza endonuclease inhibitor Xofluza.


Subject(s)
Genetic Predisposition to Disease/genetics , Host-Pathogen Interactions/genetics , Influenza A virus/pathogenicity , Influenza, Human/genetics , Influenza, Human/pathology , A549 Cells , Adaptor Proteins, Signal Transducing/genetics , Antiviral Agents/pharmacology , CRISPR-Cas Systems , Cell Line , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Dibenzothiepins , Genome-Wide Association Study , Humans , Membrane Proteins/genetics , Methyltransferases/metabolism , Morpholines , Nerve Tissue Proteins/genetics , Oxazines/pharmacology , Pyridines/pharmacology , Pyridones , Thiepins/pharmacology , Triazines/pharmacology , Vacuolar Proton-Translocating ATPases/metabolism , Virus Internalization
9.
Nucleic Acid Ther ; 28(5): 273-284, 2018 10.
Article in English | MEDLINE | ID: mdl-30133337

ABSTRACT

The Ebola virus is a zoonotic pathogen that can cause severe hemorrhagic fever in humans, with up to 90% lethality. The deadly 2014 Ebola outbreak quickly made an unprecedented impact on human lives. While several vaccines and therapeutics are under development, current approaches contain several limitations, such as virus mutational escape, need for formulation or refrigeration, poor scalability, long lead-time, and high cost. To address these challenges, we developed locked nucleic acid (LNA)-modified antisense oligonucleotides (ASOs) to target critical Ebola viral proteins and the human intracellular host protein Niemann-Pick C1 (NPC1), required for viral entry into infected cells. We generated noninfectious viral luciferase reporter assays to identify LNA ASOs that inhibit translation of Ebola viral proteins in vitro and in human cells. We demonstrated specific inhibition of key Ebola genes VP24 and nucleoprotein, which inhibit a proper immune response and promote Ebola virus replication, respectively. We also identified LNA ASOs targeting human host factor NPC1 and demonstrated reduced infection by chimeric vesicular stomatitis virus harboring the Ebola glycoprotein, which directly binds to NPC1 for viral infection. These results support further in vivo testing of LNA ASOs in infectious Ebola virus disease animal models as potential therapeutic modalities for treatment of Ebola.


Subject(s)
Hemorrhagic Fever, Ebola/genetics , Niemann-Pick C1 Protein/genetics , Oligonucleotides, Antisense/genetics , Viral Proteins/genetics , Animals , Disease Models, Animal , Ebolavirus/genetics , Ebolavirus/pathogenicity , Hemorrhagic Fever, Ebola/therapy , Hemorrhagic Fever, Ebola/virology , Humans , Immunity, Innate/genetics , Mice , Niemann-Pick C1 Protein/antagonists & inhibitors , Nucleoproteins/antagonists & inhibitors , Nucleoproteins/genetics , Oligonucleotides/genetics , Oligonucleotides/therapeutic use , Oligonucleotides, Antisense/therapeutic use , Primates/virology , Viral Proteins/antagonists & inhibitors , Virus Replication/genetics
10.
Methods Mol Biol ; 1686: 251-264, 2018.
Article in English | MEDLINE | ID: mdl-29030826

ABSTRACT

Quiescence (G0) is defined as an assortment of cell cycle arrested states that exhibit distinct properties. Leukemias harbor a subpopulation of G0 cells that can be enriched by growth factor deprivation or serum starvation. Target site reporters with shortened poly(A) tails show translation activation by microRNAs, via a noncanonical mechanism, when introduced into the nucleus of G0 cells. This is because recruitment by the activation causing FXR1a-microRNA-protein complex (FXR1a-microRNP) is nuclear and requires shortened poly(A) tails to avoid repressive factors and canonical translation. When introduced into the cytoplasm, target mRNAs and microRNAs are directed toward repression rather than translation activation. Leukemic cell lines are difficult to transfect but can be routinely nucleofected-where in vitro transcribed mRNA reporters and microRNAs are introduced into the nucleus of G0 leukemic cells. Nucleofection of a microRNA target reporter and either cognate, targeting microRNA, or control microRNA, into the nucleus of G0 cells, enables analysis of translation activation by microRNAs in G0. We discuss a modified protocol that we developed for transfection of mRNAs along with microRNAs to test translation regulation by microRNAs in G0 leukemic cells.


Subject(s)
Leukemia, Monocytic, Acute/metabolism , Luciferases/genetics , Luciferases/metabolism , MicroRNAs/genetics , Protein Biosynthesis , RNA, Messenger/metabolism , Resting Phase, Cell Cycle , Humans , Leukemia, Monocytic, Acute/genetics , RNA, Messenger/genetics
11.
Proc Natl Acad Sci U S A ; 114(25): E4961-E4970, 2017 06 20.
Article in English | MEDLINE | ID: mdl-28584122

ABSTRACT

The reversible state of proliferative arrest known as "cellular quiescence" plays an important role in tissue homeostasis and stem cell biology. By analyzing the expression of miRNAs and miRNA-processing factors during quiescence in primary human fibroblasts, we identified a group of miRNAs that are induced during quiescence despite markedly reduced expression of Exportin-5, a protein required for canonical miRNA biogenesis. The biogenesis of these quiescence-induced miRNAs is independent of Exportin-5 and depends instead on Exportin-1. Moreover, these quiescence-induced primary miRNAs (pri-miRNAs) are modified with a 2,2,7-trimethylguanosine (TMG)-cap, which is known to bind Exportin-1, and knockdown of Exportin-1 or trimethylguanosine synthase 1, responsible for (TMG)-capping, inhibits their biogenesis. Surprisingly, in quiescent cells Exportin-1-dependent pri-miR-34a is present in the cytoplasm together with a small isoform of Drosha, implying the existence of a different miRNA processing pathway in these cells. Our findings suggest that during quiescence the canonical miRNA biogenesis pathway is down-regulated and specific miRNAs are generated by an alternative pathway to regulate genes involved in cellular growth arrest.


Subject(s)
Biosynthetic Pathways/genetics , Cell Proliferation/genetics , Karyopherins/genetics , MicroRNAs/genetics , Receptors, Cytoplasmic and Nuclear/genetics , Biosynthetic Pathways/drug effects , Cell Line , Cell Line, Tumor , Cell Proliferation/drug effects , Cytoplasm/genetics , Down-Regulation/drug effects , Down-Regulation/genetics , Guanosine/analogs & derivatives , Guanosine/pharmacology , HEK293 Cells , HeLa Cells , Humans , Exportin 1 Protein
12.
RNA Biol ; 14(2): 137-145, 2017 02.
Article in English | MEDLINE | ID: mdl-27911187

ABSTRACT

Eukaryotic protein synthesis is a multifaceted process that requires coordination of a set of translation factors in a particular cellular state. During normal growth and proliferation, cells generally make their proteome via conventional translation that utilizes canonical translation factors. When faced with environmental stress such as growth factor deprivation, or in response to biological cues such as developmental signals, cells can reduce canonical translation. In this situation, cells adapt alternative modes of translation to make specific proteins necessary for required biological functions under these distinct conditions. To date, a number of alternative translation mechanisms have been reported, which include non-canonical, cap dependent translation and cap independent translation such as IRES mediated translation. Here, we discuss one of the alternative modes of translation mediated by a specialized microRNA complex, FXR1a-microRNP that promotes non-canonical, cap dependent translation in quiescent conditions, where canonical translation is reduced due to low mTOR activity.


Subject(s)
Argonaute Proteins/metabolism , Fragile X Mental Retardation Protein/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Animals , Eukaryotic Initiation Factor-4G/metabolism , Exoribonucleases/metabolism , Gene Expression Regulation , Humans , Poly A/genetics , Protein Binding , Protein Biosynthesis , RNA Cap-Binding Proteins/metabolism , RNA Caps/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , TOR Serine-Threonine Kinases/metabolism
13.
Mol Cell ; 61(5): 760-773, 2016 Mar 03.
Article in English | MEDLINE | ID: mdl-26942679

ABSTRACT

MicroRNAs predominantly decrease gene expression; however, specific mRNAs are translationally upregulated in quiescent (G0) mammalian cells and immature Xenopus laevis oocytes by an FXR1a-associated microRNA-protein complex (microRNP) that lacks the microRNP repressor, GW182. Their mechanism in these conditions of decreased mTOR signaling, and therefore reduced canonical (cap-and-poly(A)-tail-mediated) translation, remains undiscovered. Our data reveal that mTOR inhibition in human THP1 cells enables microRNA-mediated activation. Activation requires shortened/no poly(A)-tail targets; polyadenylated mRNAs are partially activated upon PAIP2 overexpression, which interferes with poly(A)-bound PABP, precluding PABP-enhanced microRNA-mediated inhibition and canonical translation. Consistently, inhibition of PARN deadenylase prevents activation. P97/DAP5, a homolog of canonical translation factor, eIF4G, which lacks PABP- and cap binding complex-interacting domains, is required for activation, and thereby for the oocyte immature state. P97 interacts with 3' UTR-binding FXR1a-associated microRNPs and with PARN, which binds mRNA 5' caps, forming a specialized complex to translate recruited mRNAs in these altered canonical translation conditions.


Subject(s)
Cellular Senescence , MicroRNAs/metabolism , Oocytes/metabolism , Protein Biosynthesis , RNA, Messenger/metabolism , RNA-Binding Proteins/metabolism , Ribonucleoproteins/metabolism , 3' Untranslated Regions , Animals , Argonaute Proteins/genetics , Argonaute Proteins/metabolism , Binding Sites , Cell Line , Eukaryotic Initiation Factor-4G/genetics , Eukaryotic Initiation Factor-4G/metabolism , Exoribonucleases/genetics , Exoribonucleases/metabolism , Gene Expression Profiling/methods , Humans , MicroRNAs/genetics , Proteomics/methods , RNA Caps/genetics , RNA Caps/metabolism , RNA Interference , RNA, Messenger/genetics , RNA-Binding Proteins/genetics , Repressor Proteins/genetics , Repressor Proteins/metabolism , Ribonucleoproteins/genetics , Signal Transduction , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Transfection , Xenopus laevis
14.
Mol Cancer Ther ; 15(1): 142-53, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26637368

ABSTRACT

Small molecule inhibitors of AKT (v-akt murine thymoma viral oncogene homolog) signaling are being evaluated in patients with various cancer types, but have so far proven therapeutically disappointing for reasons that remain unclear. Here, we treat cancer cells with subtherapeutic doses of Akti-1/2, an allosteric small molecule AKT inhibitor, in order to experimentally model pharmacologic inhibition of AKT signaling in vitro. We then apply a combined RNA, protein, and metabolite profiling approach to develop an integrated, multiscale, molecular snapshot of this "AKT(low)" cancer cell state. We find that AKT-inhibited cancer cells suppress thousands of mRNA transcripts, and proteins related to the cell cycle, ribosome, and protein translation. Surprisingly, however, these AKT-inhibited cells simultaneously upregulate a host of other proteins and metabolites posttranscriptionally, reflecting activation of their endo-vesiculo-membrane system, secretion of inflammatory proteins, and elaboration of extracellular microvesicles. Importantly, these microvesicles enable rapidly proliferating cancer cells of various types to better withstand different stress conditions, including serum deprivation, hypoxia, or cytotoxic chemotherapy in vitro and xenografting in vivo. These findings suggest a model whereby cancer cells experiencing a partial inhibition of AKT signaling may actually promote the survival of neighbors through non-cell autonomous communication.


Subject(s)
Antineoplastic Agents/pharmacology , Cell Survival/drug effects , Neoplasms/metabolism , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Animals , Cell Line, Tumor , Disease Models, Animal , Female , Gene Expression Profiling , Humans , Metabolomics , Mice , Proteomics , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Xenograft Model Antitumor Assays
15.
Proc Natl Acad Sci U S A ; 111(41): E4315-22, 2014 Oct 14.
Article in English | MEDLINE | ID: mdl-25261552

ABSTRACT

Proliferation arrest and distinct developmental stages alter and decrease general translation yet maintain ongoing translation. The factors that support translation in these conditions remain to be characterized. We investigated an altered translation factor in three cell states considered to have reduced general translation: immature Xenopus laevis oocytes, mouse ES cells, and the transition state of proliferating mammalian cells to quiescence (G0) upon growth-factor deprivation. Our data reveal a transient increase of eukaryotic translation initiation factor 5B (eIF5B), the eukaryotic ortholog of bacterial initiation factor IF2, in these conditions. eIF5B promotes 60S ribosome subunit joining and pre-40S subunit proofreading. eIF5B has also been shown to promote the translation of viral and stress-related mRNAs and can contribute indirectly to supporting or stabilizing initiator methionyl tRNA (tRNA-Met(i)) association with the ribosome. We find that eIF5B is a limiting factor for translation in these three conditions. The increased eIF5B levels lead to increased eIF5B complexes with tRNA-Met(i) upon serum starvation of THP1 mammalian cells. In addition, increased phosphorylation of eukaryotic initiation factor 2α, the translation factor that recruits initiator tRNA-Meti for general translation, is observed in these conditions. Importantly, we find that eIF5B is an antagonist of G0 and G0-like states, as eIF5B depletion reduces maturation of G0-like, immature oocytes and hastens early G0 arrest in serum-starved THP1 cells. Consistently, eIF5B overexpression promotes maturation of G0-like immature oocytes and causes cell death, an alternative to G0, in serum-starved THP1 cells. These data reveal a critical role for a translation factor that regulates specific cell-cycle transition and developmental stages.


Subject(s)
Cell Cycle Checkpoints , Eukaryotic Initiation Factors/genetics , Up-Regulation , Animals , Cell Line , Cell Survival , Culture Media, Serum-Free , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Eukaryotic Initiation Factor-2/metabolism , Eukaryotic Initiation Factors/metabolism , Humans , Mice , Oocytes/cytology , Oocytes/metabolism , Phosphorylation , Protein Biosynthesis , RNA, Transfer, Met , Xenopus laevis
16.
Genes Dev ; 27(23): 2543-8, 2013 Dec 01.
Article in English | MEDLINE | ID: mdl-24298054

ABSTRACT

Insulin-like growth factor 2 (IGF2), a developmentally regulated and maternally imprinted gene, is frequently overexpressed in pediatric cancers. Although loss of imprinting (LOI) at fetal promoters contributes to increased IGF2 in tumors, the magnitude of IGF2 expression suggests the involvement of additional regulatory mechanisms. A microRNA (miRNA) screen of primary Wilms' tumors identified specific overexpression of miR-483-5p, which is embedded within the IGF2 gene. Unexpectedly, the IGF2 mRNA itself is transcriptionally up-regulated by miR-483-5p. A nuclear pool of miR-483-5p binds directly to the 5' untranslated region (UTR) of fetal IGF2 mRNA, enhancing the association of the RNA helicase DHX9 to the IGF2 transcript and promoting IGF2 transcription. Ectopic expression of miR-483-5p in IGF2-dependent sarcoma cells is correlated with increased tumorigenesis in vivo. Together, these observations suggest a functional positive feedback loop of an intronic miRNA on transcription of its host gene.


Subject(s)
Carcinogenesis/genetics , Gene Expression Regulation, Neoplastic , Insulin-Like Growth Factor II/genetics , Introns , MicroRNAs/metabolism , Promoter Regions, Genetic/genetics , 5' Untranslated Regions/genetics , Cell Line , Cell Nucleus/metabolism , DEAD-box RNA Helicases/metabolism , Fetus/metabolism , Humans , Insulin-Like Growth Factor II/metabolism , Neoplasm Proteins/metabolism , Protein Binding , RNA, Messenger/metabolism
17.
Adv Exp Med Biol ; 768: 97-126, 2013.
Article in English | MEDLINE | ID: mdl-23224967

ABSTRACT

MicroRNAs are small noncoding RNA regulatory molecules that control gene expression by guiding associated effector complexes to other RNAs via sequence-specific recognition of target sites. Misregulation of microRNAs leads to a wide range of diseases including cancers, inflammatory and developmental disorders. MicroRNAs were found to mediate deadenylation-dependent decay and translational repression of messages through partially complementary microRNA target sites in the 3'-UTR (untranslated region). A growing series of studies has demonstrated that microRNAs and their associated complexes (microRNPs) elicit alternate functions that enable stimulation of gene expression in addition to their assigned repressive roles. These reports, discussed in this chapter, indicate that microRNA-mediated effects via natural 3' and 5'-UTRs can be selective and controlled, dictated by the RNA sequence context, associated complex, and cellular conditions. Similar to the effects of repression, upregulated gene expression by microRNAs varies from small refinements to significant amplifications in expression. An emerging theme from this literature is that microRNAs have a versatile range of abilities to manipulate post-transcriptional control mechanisms leading to controlled gene expression. These studies reveal new potentials for microRNPs in gene expression control that develop as responses to specific cellular conditions.


Subject(s)
Gene Expression , MicroRNAs/genetics , RNA Processing, Post-Transcriptional , RNA, Messenger/genetics , Ribonucleoproteins/genetics , 3' Untranslated Regions , 5' Untranslated Regions , Animals , Bacteria/genetics , Bacteria/metabolism , Humans , MicroRNAs/metabolism , Protein Biosynthesis , RNA Stability , RNA, Messenger/metabolism , Ribonucleoproteins/metabolism , Transcriptional Activation
18.
Genes Dev ; 26(13): 1459-72, 2012 Jul 01.
Article in English | MEDLINE | ID: mdl-22751500

ABSTRACT

Multidimensional cancer genome analysis and validation has defined Quaking (QKI), a member of the signal transduction and activation of RNA (STAR) family of RNA-binding proteins, as a novel glioblastoma multiforme (GBM) tumor suppressor. Here, we establish that p53 directly regulates QKI gene expression, and QKI protein associates with and leads to the stabilization of miR-20a; miR-20a, in turn, regulates TGFßR2 and the TGFß signaling network. This pathway circuitry is substantiated by in silico epistasis analysis of its components in the human GBM TCGA (The Cancer Genome Atlas Project) collection and by their gain- and loss-of-function interactions in in vitro and in vivo complementation studies. This p53-QKI-miR-20a-TGFß pathway expands our understanding of the p53 tumor suppression network in cancer and reveals a novel tumor suppression mechanism involving regulation of specific cancer-relevant microRNAs.


Subject(s)
Cell Line , Glioblastoma/metabolism , MicroRNAs/metabolism , RNA Stability , RNA-Binding Proteins/metabolism , Animals , Glioblastoma/genetics , Humans , Mice , MicroRNAs/genetics , RNA-Binding Proteins/genetics , Signal Transduction , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
19.
RNA Biol ; 9(6): 871-80, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22699554

ABSTRACT

MicroRNAs are small non-coding RNA regulators of gene expression that play important roles in critical biological processes, including cell division, self-renewal and cell state maintenance. Their deregulation leads to extensive clinical consequences in tumorigenesis. Cancers demonstrate heterogeneity in their cell states implicated in their resistance and resurgence. Apart from proliferating cells, cancers harbor a small proportion of assorted quiescent cells that resist conventional therapeutics and contribute to cancer recurrence. MicroRNA expression, targets, microRNPs (microRNA-protein complexes) and their functions have been demonstrated to be regulated in distinct tumor cell states and as an adaptive response to stress signals in tumor-unfavorable environments. In turn, altered microRNPs and their modified post-transcriptional mechanisms of gene expression may contribute to tumor resistance and influence tumor progression. An understanding of distinct microRNA mechanisms in cancer cells would provide extensive insights into the versatile roles of microRNAs in the perpetuation of tumors and indicate potential therapeutic avenues.


Subject(s)
Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , Neoplasms/pathology , RNA Interference , 3' Untranslated Regions , Animals , Base Sequence , Cell Proliferation , Humans , MicroRNAs/physiology , Neoplasms/genetics , Neoplasms/metabolism , RNA Stability
20.
Wiley Interdiscip Rev RNA ; 3(3): 311-30, 2012.
Article in English | MEDLINE | ID: mdl-22072587

ABSTRACT

MicroRNAs are small non-coding RNA guide molecules that regulate gene expression via association with effector complexes and sequence-specific recognition of target sites on other RNAs; misregulated microRNA expression and functions are linked to a variety of tumors, developmental disorders, and immune disease. MicroRNAs have primarily been demonstrated to mediate posttranscriptional downregulation of expression; translational repression, and deadenylation-dependent decay of messages through partially complementary microRNA target sites in mRNA untranslated regions (UTRs). However, an emerging assortment of studies, discussed in this review, reveal that microRNAs and their associated protein complexes (microribonucleoproteins or microRNPs) can additionally function to posttranscriptionally stimulate gene expression by direct and indirect mechanisms. These reports indicate that microRNA-mediated effects can be selective, regulated by the RNA sequence context, and associated with RNP factors and cellular conditions. Like repression, translation upregulation by microRNAs has been observed to range from fine-tuning effects to significant alterations in expression. These studies uncover remarkable, new abilities of microRNAs and associated microRNPs in gene expression control and underscore the importance of regulation, in cis and trans, in directing appropriate microRNP responses.


Subject(s)
MicroRNAs/metabolism , Up-Regulation , Animals , Gene Expression Regulation , Humans , Protein Biosynthesis , RNA, Messenger/metabolism , RNA, Small Untranslated/metabolism , RNA-Binding Proteins/metabolism , RNA-Induced Silencing Complex/metabolism , Ribonucleoproteins/metabolism , Transcriptional Activation
SELECTION OF CITATIONS
SEARCH DETAIL
...