Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Eng Sci Med ; 46(1): 119-129, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36459331

ABSTRACT

Interaction between native ventricular output and venoarterial extracorporeal membrane oxygenation (VA ECMO) flow may hinder oxygenated blood flow to the aortic arch branches, resulting in differential hypoxemia. Typically, the arterial cannula tip is placed in the iliac artery or abdominal aorta. However, the hemodynamics of a more proximal arterial cannula tip have not been studied before. This study investigated the effect of arterial cannula tip position on VA ECMO blood flow to the upper extremities using computational fluid dynamics simulations. Four arterial cannula tip positions (P1. common iliac, P2. abdominal aorta, P3. descending aorta and P4. aortic arch) were compared with different degrees of cardiac dysfunction and VA ECMO support (50%, 80% and 90% support). P4 was able to supply oxygenated blood to the arch vessels at all support levels, while P1 to P3 only supplied the arch vessels during the highest level (90%) of VA ECMO support. Even during the highest level of support, P1 to P3 could only provide oxygenated VA-ECMO flow at 0.11 L/min to the brachiocephalic artery, compared with 0.5 L/min at P4. This study suggests that cerebral perfusion of VA ECMO flow can be increased by advancing the arterial cannula tip towards the aortic arch.


Subject(s)
Extracorporeal Membrane Oxygenation , Humans , Extracorporeal Membrane Oxygenation/methods , Cannula , Catheterization/methods , Hypoxia/therapy , Aorta, Thoracic
2.
ASAIO J ; 68(11): 1358-1366, 2022 11 01.
Article in English | MEDLINE | ID: mdl-35184087

ABSTRACT

Veno-venous extracorporeal membrane oxygenation (VV-ECMO) supports patients with severe respiratory failure not responding to conventional treatments. Single-site jugular venous cannulation with dual-lumen cannulas (DLC) have several advantages over traditional single-lumen cannulas, however, bleeding and thrombosis are common, limiting their clinical utility. This study numerically investigated the effects of DLC side holes on blood flow dynamics since the maximum wall shear stress (WSS) occurs around the side holes. A DLC based on the Avalon Elite 27Fr model was implanted into an idealized 3D model of the vena cava and right atrium (RA). Eight DLCs were developed by changing the number, diameter, and spacing of side holes through an iterative design process. Physiologic flow at the inferior vena cava (IVC) and superior vena cava (SVC) were applied along with a partial ECMO support of 2 L/min. The SST k-ω turbulent model was solved for 6.4 seconds. WSS, washout, stagnation volume, and recirculation were compared. For all DLCs, no stasis region lasted more than one cardiac cycle and a complete washout was obtained in less than 4 seconds. Due to the IVC and SVC backflows, maximum WSS occurred around the DLC side holes at late systole and late diastole. A DLC with 16 and three side holes within the IVC and SVC, respectively, reduced the maximum WSS by up to 67% over the Avalon Elite 27Fr. Improved DLCs provided a more uniform WSS distribution with lower WSS around the side holes, potentially reducing the chance of thrombosis and bleeding.


Subject(s)
Catheterization, Central Venous , Extracorporeal Membrane Oxygenation , Respiratory Insufficiency , Humans , Extracorporeal Membrane Oxygenation/adverse effects , Cannula , Vena Cava, Superior , Respiratory Insufficiency/therapy
3.
ASAIO J ; 68(2): 205-213, 2022 02 01.
Article in English | MEDLINE | ID: mdl-33883503

ABSTRACT

Thrombosis is a potentially life-threatening complication in veno-arterial extracorporeal membrane oxygenation (ECMO) circuits, which may originate from the drainage cannula due to unfavorable blood flow dynamics. This study aims to numerically investigate the effect of cannula design parameters on local fluid dynamics, and thus thrombosis potential, within ECMO drainage cannulas. A control cannula based on the geometry of a 17 Fr Medtronic drainage cannula concentrically placed in an idealized, rigid-walled geometry of the right atrium and superior and inferior vena cava was numerically modeled. Simulated flow dynamics in the control cannula were systematically compared with 10 unique cannula designs which incorporated changes to side hole diameter, the spacing between side holes, and side hole angles. Local blood velocities, maximum wall shear stress (WSS), and blood residence time were used to predict the risk of thrombosis. Numerical results were experimentally validated using particle image velocimetry. The control cannula exhibited low blood velocities (59 mm/s) at the cannula tip, which may promote thrombosis. Through a reduction in the side hole diameter (2 mm), the spacing between the side holes (3 mm) and alteration in the side hole angle (30° relative to the flow direction), WSS was reduced by 52%, and cannula tip blood velocity was increased by 560% compared to the control cannula. This study suggests that simple geometrical changes can significantly alter the risk of thrombosis in ECMO drainage cannulas.


Subject(s)
Extracorporeal Membrane Oxygenation , Thrombosis , Cannula/adverse effects , Drainage , Extracorporeal Membrane Oxygenation/adverse effects , Humans , Thrombosis/etiology , Thrombosis/prevention & control , Vena Cava, Inferior
SELECTION OF CITATIONS
SEARCH DETAIL
...