Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Physiol Endocrinol Metab ; 318(4): E514-E524, 2020 04 01.
Article in English | MEDLINE | ID: mdl-31990576

ABSTRACT

We examined the methionine aminopeptidase 2 inhibitor fumagillin in dogs consuming a high-fat and -fructose diet (HFFD). In pilot studies (3 dogs that had consumed HFFD for 3 yr), 8 wk of daily treatment with fumagillin reduced food intake 29%, weight 6%, and the glycemic excursion during an oral glucose tolerance test (OGTT) 44%. A second group of dogs consumed the HFFD for 17 wk: pretreatment (weeks 0-4), treatment with fumagillin (FUM; n = 6), or no drug (Control, n = 8) (weeks 4-12), washout period (weeks 12-16), and fumagillin or no drug for 1 wk (week 17). OGTTs were performed at 0, 4, 11, and 16 wk. A hyperinsulinemic hyperglycemic clamp was performed in week 12; 4 chow-fed dogs underwent identical clamps. Kilocalories per day intake during the treatment period was 2,067 ± 50 (Control) versus 1,824 ± 202 (FUM). Body weights (kg) increased 1.9 ± 0.3 vs. 2.7 ± 0.8 (0-4 wk) and 1.2 ± 0.2 vs. -0.02 ± 0.9 (4-12 wk) in Control versus fumagillin. The OGTT glycemic response was 30% greater in Control versus fumagillin at 11 wk. Net hepatic glucose uptake (NHGU; mg·kg-1·min-1) in the Chow, Control, and fumagillin dogs was ~1.5 ± 0.6, -0.1 ± 0.1, and 0.3 ± 0.4 (with no portal glucose infusion) and 3.1 ± 0.6, 0.5 ± 0.3, and 1.5 ± 0.5 (portal glucose infusion at 4 mg·kg-1·min-1), respectively. Fumagillin improved glucose tolerance and NHGU in HFFD dogs, suggesting methionine aminopeptidase 2 (MetAP2) inhibitors have the potential for improving glycemic control in prediabetes and diabetes.


Subject(s)
Aminopeptidases/antagonists & inhibitors , Cyclohexanes/pharmacology , Diet, High-Fat/adverse effects , Fatty Acids, Unsaturated/pharmacology , Fructose/adverse effects , Glucose/metabolism , Glucose/pharmacology , Metalloendopeptidases/antagonists & inhibitors , Animals , Blood Glucose/metabolism , Body Weight/drug effects , Diet , Dogs , Eating/drug effects , Glucose Clamp Technique , Glucose Tolerance Test , Insulin Resistance , Male , Sesquiterpenes/pharmacology
2.
JCI Insight ; 5(2)2020 01 30.
Article in English | MEDLINE | ID: mdl-31877115

ABSTRACT

The ciliopathies Bardet-Biedl syndrome and Alström syndrome are genetically inherited pleiotropic disorders with hyperphagia and obesity as primary clinical features. Methionine aminopeptidase 2 inhibitors (MetAP2i) have been shown in preclinical and clinical studies to reduce food intake, body weight, and adiposity. Here, we investigated the effects of MetAP2i administration in a mouse model of ciliopathy produced by conditional deletion of the Thm1 gene in adulthood. Thm1 conditional knockout (cko) mice showed decreased hypothalamic proopiomelanocortin expression as well as hyperphagia, obesity, metabolic disease, and hepatic steatosis. In obese Thm1-cko mice, 2-week administration of MetAP2i reduced daily food intake and reduced body weight 17.1% from baseline (vs. 5% reduction for vehicle). This was accompanied by decreased levels of blood glucose, insulin, and leptin. Further, MetAP2i reduced gonadal adipose depots and adipocyte size and improved liver morphology. This is the first report to our knowledge of MetAP2i reducing hyperphagia and body weight and ameliorating metabolic indices in a mouse model of ciliopathy. These results support further investigation of MetAP2 inhibition as a potential therapeutic strategy for ciliary-mediated forms of obesity.


Subject(s)
Body Weight/drug effects , Ciliopathies/complications , Ciliopathies/metabolism , Eating/drug effects , Methionyl Aminopeptidases/antagonists & inhibitors , Methionyl Aminopeptidases/metabolism , Obesity/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Blood Glucose/metabolism , Disease Models, Animal , Enzyme Inhibitors/pharmacology , Fatty Liver/metabolism , Leptin/metabolism , Liver/metabolism , Liver/pathology , Male , Methionyl Aminopeptidases/drug effects , Methionyl Aminopeptidases/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Obese , Transcriptome
3.
J Pharmacol Exp Ther ; 365(2): 301-313, 2018 05.
Article in English | MEDLINE | ID: mdl-29491038

ABSTRACT

Methionine aminopeptidase 2 (MetAP2) inhibition is a promising approach to treating diabetes, obesity, and associated metabolic disorders. Beloranib, a MetAP2 inhibitor previously investigated for treatment of Prader-Willi syndrome, was associated with venous thrombotic adverse events likely resulting from drug effects on vascular endothelial cells (ECs). Here, we report the pharmacological characterization of ZGN-1061, a novel MetAP2 inhibitor being investigated for treatment of diabetes and obesity. Four weeks of subcutaneous administration of ZGN-1061 to diet-induced obese (DIO) insulin-resistant mice produced a 25% reduction in body weight, primarily due to reduced fat mass, that was comparable to beloranib. ZGN-1061 also produced improvements in metabolic parameters, including plasma glucose and insulin, and, in HepG2 cells, initiated gene changes similar to beloranib that support observed in vivo pharmacodynamics. In vitro studies in ECs demonstrated that ZGN-1061 effects on EC proliferation and coagulation proteins were greatly attenuated, or absent, relative to beloranib, due to lower intracellular drug concentrations, shorter half-life of inhibitor-bound MetAP2 complex, and reduced cellular enzyme inhibition. In dogs, ZGN-1061 was more rapidly absorbed and cleared, with a shorter half-life than beloranib. Unlike beloranib, ZGN-1061 did not increase coagulation markers in dogs, and ZGN-1061 had a greatly improved safety profile in rats relative to beloranib. In conclusion, ZGN-1061 and beloranib demonstrated similar efficacy in a mouse model of obesity, while ZGN-1061 had a markedly improved safety profile in multiple in vitro and in vivo models. The lower duration of exposure characteristic of ZGN-1061 is expected to provide a meaningfully enhanced clinical safety profile.


Subject(s)
Aminopeptidases/antagonists & inhibitors , Azetidines/adverse effects , Azetidines/pharmacology , Metalloendopeptidases/antagonists & inhibitors , Morpholines/adverse effects , Morpholines/pharmacology , Obesity/drug therapy , Safety , Animals , Azetidines/pharmacokinetics , Azetidines/therapeutic use , Blood Coagulation/drug effects , Cinnamates/pharmacokinetics , Cinnamates/pharmacology , Cyclohexanes/pharmacokinetics , Cyclohexanes/pharmacology , Dogs , Enzyme Inhibitors/adverse effects , Enzyme Inhibitors/pharmacokinetics , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Epoxy Compounds/pharmacokinetics , Epoxy Compounds/pharmacology , Female , Hep G2 Cells , Humans , Hypoglycemic Agents/adverse effects , Hypoglycemic Agents/pharmacokinetics , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Male , Mice , Mice, Inbred C57BL , Morpholines/pharmacokinetics , Morpholines/therapeutic use , Obesity/enzymology , Rats , Sesquiterpenes/pharmacokinetics , Sesquiterpenes/pharmacology , Tissue Distribution
4.
JCI Insight ; 3(5)2018 03 08.
Article in English | MEDLINE | ID: mdl-29515039

ABSTRACT

Current obesity interventions suffer from lack of durable effects and undesirable complications. Fumagillin, an inhibitor of methionine aminopeptidase-2, causes weight loss by reducing food intake, but with effects on weight that are superior to pair-feeding. Here, we show that feeding of rats on a high-fat diet supplemented with fumagillin (HF/FG) suppresses the aggressive feeding observed in pair-fed controls (HF/PF) and alters expression of circadian genes relative to the HF/PF group. Multiple indices of reduced energy expenditure are observed in HF/FG but not HF/PF rats. HF/FG rats also exhibit changes in gut hormones linked to food intake, increased energy harvest by gut microbiota, and caloric spilling in the urine. Studies in gnotobiotic mice reveal that effects of fumagillin on energy expenditure but not feeding behavior may be mediated by the gut microbiota. In sum, fumagillin engages weight loss-inducing behavioral and physiologic circuits distinct from those activated by simple caloric restriction.


Subject(s)
Bacteria/isolation & purification , Cyclohexanes/administration & dosage , Energy Metabolism/drug effects , Fatty Acids, Unsaturated/administration & dosage , Gastrointestinal Microbiome/drug effects , Obesity/drug therapy , Aminopeptidases/antagonists & inhibitors , Animals , Bacteria/drug effects , Bacteria/metabolism , Behavior, Animal/drug effects , Body Weight/drug effects , Diet, High-Fat/adverse effects , Disease Models, Animal , Feces/microbiology , Feeding Behavior/drug effects , Gastrointestinal Microbiome/physiology , Germ-Free Life/drug effects , Germ-Free Life/physiology , Glycoproteins/antagonists & inhibitors , Humans , Male , Methionyl Aminopeptidases , Mice , Mice, Inbred C57BL , Obesity/etiology , Obesity/metabolism , Rats , Rats, Wistar , Sesquiterpenes/administration & dosage , Treatment Outcome , Weight Loss/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL