Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Clin Cancer Res ; 23(17): 5135-5148, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28512172

ABSTRACT

Purpose: Conditioning strategies constitute a relatively unexplored and exciting opportunity to shape tumor fate by targeting the tumor microenvironment. In this study, we assessed how hemin, a pharmacologic inducer of heme oxygenase-1 (HO-1), has an impact on prostate cancer development in an in vivo conditioning model.Experimental Design: The stroma of C57BL/6 mice was conditioned by subcutaneous administration of hemin prior to TRAMP-C1 tumor challenge. Complementary in vitro and in vivo assays were performed to evaluate hemin effect on both angiogenesis and the immune response. To gain clinical insight, we used prostate cancer patient-derived samples in our studies to assess the expression of HO-1 and other relevant genes.Results: Conditioning resulted in increased tumor latency and decreased initial growth rate. Histologic analysis of tumors grown in conditioned mice revealed impaired vascularization. Hemin-treated human umbilical vein endothelial cells (HUVEC) exhibited decreased tubulogenesis in vitro only in the presence of TRAMP-C1-conditioned media. Subcutaneous hemin conditioning hindered tumor-associated neovascularization in an in vivo Matrigel plug assay. In addition, hemin boosted CD8+ T-cell proliferation and degranulation in vitro and antigen-specific cytotoxicity in vivo A significant systemic increase in CD8+ T-cell frequency was observed in preconditioned tumor-bearing mice. Tumors from hemin-conditioned mice showed reduced expression of galectin-1 (Gal-1), key modulator of tumor angiogenesis and immunity, evidencing persistent remodeling of the microenvironment. We also found a subset of prostate cancer patient-derived xenografts and prostate cancer patient samples with mild HO-1 and low Gal-1 expression levels.Conclusions: These results highlight a novel function of a human-used drug as a means of boosting the antitumor response. Clin Cancer Res; 23(17); 5135-48. ©2017 AACR.


Subject(s)
Galectin 1/genetics , Heme Oxygenase-1/genetics , Hemin/administration & dosage , Prostatic Neoplasms/drug therapy , Animals , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/pathology , Cell Proliferation/drug effects , Disease Models, Animal , Galectin 1/antagonists & inhibitors , Gene Expression Regulation, Neoplastic/drug effects , Heme Oxygenase-1/antagonists & inhibitors , Human Umbilical Vein Endothelial Cells/drug effects , Humans , Male , Mice , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/pathology , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Xenograft Model Antitumor Assays
2.
Cell Death Dis ; 7(12): e2570, 2016 12 29.
Article in English | MEDLINE | ID: mdl-28032857

ABSTRACT

Prostate cancer (PCa) cells display abnormal expression of cytoskeletal proteins resulting in an augmented capacity to resist chemotherapy and colonize distant organs. We have previously shown that heme oxygenase 1 (HO-1) is implicated in cell morphology regulation in PCa. Here, through a multi 'omics' approach we define the HO-1 interactome in PCa, identifying HO-1 molecular partners associated with the integrity of the cellular cytoskeleton. The bioinformatics screening for these cytoskeletal-related partners reveal that they are highly misregulated in prostate adenocarcinoma compared with normal prostate tissue. Under HO-1 induction, PCa cells present reduced frequency in migration events, trajectory and cell velocity and, a significant higher proportion of filopodia-like protrusions favoring zippering among neighboring cells. Moreover forced expression of HO-1 was also capable of altering cell protrusions in transwell co-culture systems of PCa cells with MC3T3 cells (pre-osteoblastic cell line). Accordingly, these effects were reversed under siHO. Transcriptomics profiling evidenced significant modulation of key markers related to cell adhesion and cell-cell communication under HO-1 induction. The integration from our omics-based research provides a four molecular pathway foundation (ANXA2/HMGA1/POU3F1; NFRSF13/GSN; TMOD3/RAI14/VWF; and PLAT/PLAU) behind HO-1 regulation of tumor cytoskeletal cell compartments. The complementary proteomics and transcriptomics approaches presented here promise to move us closer to unravel the molecular framework underpinning HO-1 involvement in the modulation of cytoskeleton pathways, pushing toward a less aggressive phenotype in PCa.


Subject(s)
Cell Communication/genetics , Gene Regulatory Networks , Heme Oxygenase-1/metabolism , Prostatic Neoplasms/enzymology , Prostatic Neoplasms/pathology , Pseudopodia/metabolism , Animals , Cell Communication/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Coculture Techniques , Crystallography, X-Ray , Culture Media, Conditioned/pharmacology , Cytoskeleton/drug effects , Cytoskeleton/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Gene Regulatory Networks/drug effects , Humans , Male , Mice , Oligonucleotide Array Sequence Analysis , Prostatic Neoplasms/genetics , Protein Binding/drug effects , Proteomics , Pseudopodia/drug effects , Sequence Analysis, RNA , Tandem Mass Spectrometry , Transcriptome/drug effects , Transcriptome/genetics
3.
Oncotarget ; 7(14): 18798-811, 2016 Apr 05.
Article in English | MEDLINE | ID: mdl-26933806

ABSTRACT

Metabolic syndrome (MeS) has been identified as a risk factor for breast cancer. C-terminal binding protein 1 (CtBP1) is a co-repressor of tumor suppressor genes that is activated by low NAD+/NADH ratio. High fat diet (HFD) increases intracellular NADH. We investigated the effect of CtBP1 hyperactivation by HFD intake on mouse breast carcinogenesis. We generated a MeS-like disease in female mice by chronically feeding animals with HFD. MeS increased postnatal mammary gland development and generated prominent duct patterns with markedly increased CtBP1 and Cyclin D1 expression. CtBP1 induced breast cancer cells proliferation. Serum from animals with MeS enriched the stem-like/progenitor cell population from breast cancer cells. CtBP1 increased breast tumor growth in MeS mice modulating multiple genes and miRNA expression implicated in cell proliferation, progenitor cells phenotype, epithelial to mesenchymal transition, mammary development and cell communication in the xenografts. These results define a novel function for CtBP1 in breast carcinogenesis.


Subject(s)
Alcohol Oxidoreductases/metabolism , Breast Neoplasms/metabolism , DNA-Binding Proteins/metabolism , Metabolic Syndrome/metabolism , MicroRNAs/metabolism , Animals , Breast Neoplasms/genetics , Diet, High-Fat , Female , Heterografts , Humans , MCF-7 Cells , Metabolic Syndrome/genetics , Mice , Mice, Nude , NIH 3T3 Cells , Random Allocation , Risk Factors
4.
Mol Cancer Res ; 9(8): 1078-90, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21700680

ABSTRACT

BRCA1 plays numerous roles in the regulation of genome integrity and chemoresistance. Although BRCA1 interaction with key proteins involved in DNA repair is well known, its role as a coregulator in the transcriptional response to DNA damage remains poorly understood. In this study, we show that BRCA1 plays a central role in the transcriptional response to genotoxic stress in prostate cancer. BRCA1 expression mediates apoptosis, cell-cycle arrest, and decreased viability in response to doxorubicin treatment. Xenograft studies using human prostate carcinoma PC3 cells show that BRCA1 depletion results in increased tumor growth. A focused survey of BRCA1-regulated genes in prostate carcinoma reveals that multiple regulators of genome stability and cell-cycle control, including BLM, FEN1, DDB2, H3F3B, BRCA2, CCNB2, MAD2L1, and GADD153, are direct transcriptional targets of BRCA1. Furthermore, we show that BRCA1 targets GADD153 promoter to increase its transcription in response to DNA damage. Finally, GADD153 depletion significantly abrogates BRCA1 influence on cell-cycle progression and cell death in response to doxorubicin treatment. These findings define a novel transcriptional pathway through which BRCA1 orchestrates cell fate decisions in response to genotoxic insults, and suggest that BRCA1 status should be considered for new chemotherapeutic treatment strategies in prostate cancer.


Subject(s)
Antibiotics, Antineoplastic/pharmacology , BRCA1 Protein/metabolism , Carcinoma/metabolism , DNA Damage/genetics , Doxorubicin/pharmacology , Drug Resistance, Neoplasm/genetics , Prostatic Neoplasms/metabolism , Transcription Factor CHOP/metabolism , Animals , BRCA1 Protein/genetics , Carcinoma/pathology , Cell Cycle Checkpoints/drug effects , Cell Cycle Checkpoints/genetics , Cell Line, Tumor , Genomic Instability/genetics , Humans , Male , Mice , Prostatic Neoplasms/pathology , Transcription Factor CHOP/genetics
5.
Mol Cancer Res ; 7(11): 1745-55, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19903769

ABSTRACT

Prostate cancer (PCa) is the second leading cause of cancer-associated death in men. Inflammation has been recognized as a risk factor for this disease. Heme oxygenase 1 (HO-1), the inducible isoform of the rate-limiting enzyme in heme degradation, counteracts oxidative and inflammatory damage. Here, we investigated the regulated expression of HO-1 and its functional consequences in PCa. We studied the effect of genetic and pharmacologic disruption of HO-1 in the growth, invasion, and migration in androgen-sensitive (MDA PCa2b and LNCaP) and androgen-insensitive (PC3) PCa cell lines. Our results show that HO-1 levels are markedly decreased in PC3 compared with MDA PCa2b and LNCaP. Hemin treatment increased HO-1 at both protein and mRNA levels in all cell lines and decreased cell proliferation and invasion. Furthermore, overexpression of HO-1 in PC3 resulted in markedly reduced cell proliferation and migration. Accordingly, small interfering RNA-mediated silencing of HO-1 expression in MDA PCa2b cells resulted in increased proliferation and invasion. Using reverse transcription-quantitative PCR-generated gene array, a set of inflammatory and angiogenic genes were upregulated or downregulated in response to HO-1 overexpression identifying matrix metalloprotease 9 (MMP9) as a novel downstream target of HO-1. MMP9 production and activity was downregulated by HO-1 overexpression. Furthermore, PC3 cells stably transfected with HO-1 (PC3HO-1) and controls were injected into nu/nu mice for analysis of in vivo tumor xenograft phenotype. Tumor growth and MMP9 expression was significantly reduced in PC3HO-1 tumors compared with control xenografts. Taken together, these results implicate HO-1 in PCa cell migration and proliferation suggesting its potential role as a therapeutic target in clinical settings.


Subject(s)
Heme Oxygenase-1/metabolism , Prostatic Neoplasms/enzymology , Prostatic Neoplasms/pathology , Animals , Cell Growth Processes/drug effects , Cell Growth Processes/physiology , Cell Line, Tumor , Cell Movement/drug effects , Cell Movement/physiology , Down-Regulation , Gene Expression Profiling , Gene Expression Regulation, Enzymologic , Heme Oxygenase-1/genetics , Hemin/pharmacology , Humans , Immunohistochemistry , Male , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 9/metabolism , Mice , Microarray Analysis , Neoplasm Invasiveness , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , RNA, Small Interfering/administration & dosage , RNA, Small Interfering/genetics , Transfection , Transplantation, Heterologous
6.
Per Med ; 1(1): 127-130, 2004 Dec.
Article in English | MEDLINE | ID: mdl-29793225

ABSTRACT

Genomics must be combined with proteomics and metabolomics to rationalize a therapeutic strategy that considers gene expression, protein expression and metabolic profiles in the target organ to gain insight into other pathways implicated in the same or contributory tissues. Multidisciplinary strategies such as this provide an interactive process by which findings are translated into novel therapies.

7.
BMC Cancer ; 2: 6, 2002 Mar 22.
Article in English | MEDLINE | ID: mdl-11914144

ABSTRACT

BACKGROUND: Acute Intermittent Porphyria is a genetic disorder of heme metabolism, characterized by increased levels of porphyrin precursors, delta-aminolevulinic acid (ALA) and porphobilinogen (PBG). ALA has been reported to generate reactive oxygen species and to cause oxidative damage to proteins, subcellular structures and DNA. It is known that oxidative stress can induce apoptosis. The aim of this work was to study the cytotoxic effect of ALA on two hepatocarcinoma cell lines. RESULTS: We have determined the impact of ALA on HEP G2 and HEP 3B hepatocarcinoma cell lines survival as measured by the MTT assay. ALA proved to be cytotoxic in both cell lines however; HEP G2 was more sensitive to ALA than HEP 3B. Addition of hemin or glucose diminished ALA cytotoxicity in HEP G2 cells; instead it was enhanced in HEP 3B cells. Because apoptosis is usually associated with DNA fragmentation, the DNA of ALA treated and untreated cells were analyzed. The characteristic pattern of DNA fragmentation ladders was observed in ALA treated cells. To elucidate the mechanisms of ALA induced apoptosis, we examined its effect on p53 expression. No changes in p53 mRNA levels were observed after exposure of both cell lines to ALA for 24 h. CDK2 and CDK4 protein levels were reduced after ALA treatment at physiological concentrations.


Subject(s)
Aminolevulinic Acid/toxicity , Carcinoma, Hepatocellular/drug therapy , Liver Neoplasms/drug therapy , Aminolevulinic Acid/therapeutic use , Carcinoma, Hepatocellular/metabolism , Cell Cycle/drug effects , DNA Fragmentation/drug effects , DNA, Neoplasm/metabolism , Dose-Response Relationship, Drug , Glucose/pharmacology , Hemin/pharmacology , Humans , Liver Neoplasms/metabolism , Tetrazolium Salts/metabolism , Thiazoles/metabolism , Tumor Cells, Cultured , Tumor Suppressor Protein p53/biosynthesis , Tumor Suppressor Protein p53/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL