Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Plant Biol ; 15: 299, 2015 Dec 24.
Article in English | MEDLINE | ID: mdl-26705106

ABSTRACT

BACKGROUND: For functional genomics studies, it is important to understand the dynamic expression profiles of transcribed genes in different tissues, stages of development and in response to environmental stimuli. The proliferation in the use of next-generation sequencing technologies by the plant research community has led to the accumulation of large volumes of expression data. However, analysis of these datasets is complicated by the frequent occurrence of polyploidy among economically-important crop species. In addition, processing and analyzing such large volumes of sequence data is a technical and time-consuming task, limiting their application in functional genomics studies, particularly for smaller laboratories which lack access to high-powered computing infrastructure. Wheat is a good example of a young polyploid species with three similar genomes (97 % identical among homoeologous genes), rapidly accumulating RNA-seq datasets and a large research community. DESCRIPTION: We present WheatExp, an expression database and visualization tool to analyze and compare homoeologue-specific transcript profiles across a broad range of tissues from different developmental stages in polyploid wheat. Beginning with publicly-available RNA-seq datasets, we developed a pipeline to distinguish between homoeologous transcripts from annotated genes in tetraploid and hexaploid wheat. Data from multiple studies is processed and compiled into a database which can be queried either by BLAST or by searching for a known gene of interest by name or functional domain. Expression data of multiple genes can be displayed side-by-side across all expression datasets providing immediate access to a comprehensive panel of expression data for specific subsets of wheat genes. CONCLUSIONS: The development of a publicly accessible expression database hosted on the GrainGenes website - http://wheat.pw.usda.gov/WheatExp/ - coupled with a simple and readily-comparable visualization tool will empower the wheat research community to use RNA-seq data and to perform functional analyses of target genes. The presented expression data is homoeologue-specific allowing for the analysis of relative contributions from each genome to the overall expression of a gene, a critical consideration for breeding applications. Our approach can be expanded to other polyploid species by adjusting sequence mapping parameters according to the specific divergence of their genomes.


Subject(s)
Databases, Nucleic Acid , Polyploidy , Triticum/genetics , Chromosomes, Plant/genetics , Gene Expression Regulation, Plant , RNA, Plant/genetics
2.
BMC Plant Biol ; 14: 368, 2014 Dec 19.
Article in English | MEDLINE | ID: mdl-25524236

ABSTRACT

BACKGROUND: During wheat senescence, leaf components are degraded in a coordinated manner, releasing amino acids and micronutrients which are subsequently transported to the developing grain. We have previously shown that the simultaneous downregulation of Grain Protein Content (GPC) transcription factors, GPC1 and GPC2, greatly delays senescence and disrupts nutrient remobilization, and therefore provide a valuable entry point to identify genes involved in micronutrient transport to the wheat grain. RESULTS: We generated loss-of-function mutations for GPC1 and GPC2 in tetraploid wheat and showed in field trials that gpc1 mutants exhibit significant delays in senescence and reductions in grain Zn and Fe content, but that mutations in GPC2 had no significant effect on these traits. An RNA-seq study of these mutants at different time points showed a larger proportion of senescence-regulated genes among the GPC1 (64%) than among the GPC2 (37%) regulated genes. Combined, the two GPC genes regulate a subset (21.2%) of the senescence-regulated genes, 76.1% of which are upregulated at 12 days after anthesis, before the appearance of any visible signs of senescence. Taken together, these results demonstrate that GPC1 is a key regulator of nutrient remobilization which acts predominantly during the early stages of senescence. Genes upregulated at this stage include transporters from the ZIP and YSL gene families, which facilitate Zn and Fe export from the cytoplasm to the phloem, and genes involved in the biosynthesis of chelators that facilitate the phloem-based transport of these nutrients to the grains. CONCLUSIONS: This study provides an overview of the transport mechanisms activated in the wheat flag leaf during monocarpic senescence. It also identifies promising targets to improve nutrient remobilization to the wheat grain, which can help mitigate Zn and Fe deficiencies that afflict many regions of the developing world.


Subject(s)
Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Membrane Transport Proteins/genetics , Plant Leaves/genetics , Plant Proteins/genetics , Triticum/genetics , Base Sequence , Iron/metabolism , Membrane Transport Proteins/metabolism , Molecular Sequence Data , Phylogeny , Plant Leaves/growth & development , Plant Proteins/metabolism , RNA, Plant/genetics , RNA, Plant/metabolism , Triticum/growth & development , Triticum/metabolism , Zinc/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL