Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-39000186

ABSTRACT

Microplastics (MPs) pervade the environment, infiltrating food sources and human bodies, raising concerns about their impact on human health. This review is focused on three key questions: (i) What type of polymers are humans most exposed to? (ii) What are the prevalent shapes of MPs found in food and human samples? (iii) Are the data influenced by the detection limit on the size of particles? Through a systematic literature analysis, we have explored data on polymer types and shapes found in food and human samples. The data provide evidence that polyester is the most commonly detected polymer in humans, followed by polyamide, polyurethane, polypropylene, and polyacrylate. Fibres emerge as the predominant shape across all categories, suggesting potential environmental contamination from the textile industry. Studies in humans and drinking water reported data on small particles, in contrast to larger size MPs detected in environmental research, in particular seafood. Discrepancies in size detection methodologies across different reports were identified, which could impact some of the discussed trends. This study highlights the need for more comprehensive research on the interactions between MPs and biological systems and the effects of MPs on toxicity, together with standardised analytical methodologies to accurately assess contamination levels and human exposure. Understanding these dynamics is essential for formulating effective strategies to mitigate the environmental and health implications of MP pollution.


Subject(s)
Drinking Water , Microplastics , Microplastics/analysis , Humans , Drinking Water/analysis , Drinking Water/chemistry , Water Pollutants, Chemical/analysis , Polymers/chemistry , Polymers/analysis , Environmental Monitoring/methods , Food Contamination/analysis
2.
Article in English | MEDLINE | ID: mdl-35257495

ABSTRACT

Nanomaterials offer promising solutions as drug delivery systems and imaging agents in response to the demand for better therapeutics and diagnostics. However, the limited understanding of the interaction between nanoparticles and biological entities is currently hampering the development of new systems and their applications in clinical settings. Proteins and lipids in biological fluids are known to complex with nanoparticles to form a "biomolecular corona". This has been shown to affect particles' morphology and behavior in biological systems and their interactions with cells. Hence, understanding how nanomaterials' physicochemical properties affect the formation and composition of this biocorona is a crucial step. This work evaluates existing literature on how morphology (size and shape), and surface chemistry (charge and hydrophobicity) of nanoparticles influence the formation of protein corona. The latest evidence suggest that although surface charge promotes the interaction with proteins and lipids, surface chemistry plays a leading role in determining the affinity of the nanoparticle for biomolecules and, ultimately, the composition of the corona. More recently the study of additional nanoparticles' properties like shape and surface chirality have demonstrated a significant effect on protein corona architecture, providing new tools to tailor biomolecular corona formation. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials.


Subject(s)
Nanoparticles , Nanostructures , Protein Corona , Lipids , Nanomedicine/methods , Nanoparticles/chemistry , Nanostructures/chemistry , Protein Corona/chemistry , Proteins
3.
Int J Mol Sci ; 22(21)2021 Oct 24.
Article in English | MEDLINE | ID: mdl-34768888

ABSTRACT

The self-assembly of amphiphilic block-copolymers is a convenient way to obtain soft nanomaterials of different morphology and scale. In turn, the use of a biomimetic approach makes it possible to synthesize polymers with fragments similar to natural macromolecules but more resistant to biodegradation. In this study, we synthesized the novel bio-inspired amphiphilic block-copolymers consisting of poly(N-methacrylamido-d-glucose) or poly(N-vinyl succinamic acid) as a hydrophilic fragment and poly(O-cholesteryl methacrylate) as a hydrophobic fragment. Block-copolymers were synthesized by radical addition-fragmentation chain-transfer (RAFT) polymerization using dithiobenzoate or trithiocarbonate chain-transfer agent depending on the first monomer, further forming the hydrophilic block. Both homopolymers and copolymers were characterized by 1H NMR and Fourier transform infrared spectroscopy, as well as thermogravimetric analysis. The obtained copolymers had low dispersity (1.05-1.37) and molecular weights in the range of ~13,000-32,000. The amphiphilic copolymers demonstrated enhanced thermal stability in comparison with hydrophilic precursors. According to dynamic light scattering and nanoparticle tracking analysis, the obtained amphiphilic copolymers were able to self-assemble in aqueous media into nanoparticles with a hydrodynamic diameter of approximately 200 nm. An investigation of nanoparticles by transmission electron microscopy revealed their spherical shape. The obtained nanoparticles did not demonstrate cytotoxicity against human embryonic kidney (HEK293) and bronchial epithelial (BEAS-2B) cells, and they were characterized by a low uptake by macrophages in vitro. Paclitaxel loaded into the developed polymer nanoparticles retained biological activity against lung adenocarcinoma epithelial cells (A549).


Subject(s)
Drug Delivery Systems/methods , Nanoparticles/chemistry , Cell Line , HEK293 Cells , Humans , Hydrophobic and Hydrophilic Interactions , Methacrylates/chemistry , Paclitaxel/administration & dosage , Polymers/chemistry
4.
Article in English | MEDLINE | ID: mdl-33322709

ABSTRACT

Despite growing interest in the environmental impact of microplastics, a standardized characterization method is not available. We carried out a systematic analysis of reliable global data detailing the relative abundance of polymers in freshwaters and estuaries. The polymers were identified according to seven main categories: polyethylene terephthalate, polyethylene, polyvinyl chloride, polypropylene, polystyrene, polyurethane and a final category of miscellaneous plastic. The results show that microplastics comprised of polyvinyl chloride and polyurethane are significantly less abundant than would be expected based on global production, possibly due to their use. This has implications for models of microplastic release into the environment based on production and fate. When analysed by matrix (water, sediment or biota) distinct profiles were obtained for each category. Polyethylene, polypropylene and polystyrene were more abundant in sediment than in biota, while miscellaneous plastics was more frequent in biota. The data suggest that environmental sorting of microplastic particles, influenced by physical, chemical and biological processes, may play a key role in environmental impact, although partitioning among matrices based on density was not realized. The distinct profile of microplastics in biota raises an important question regarding potential selectivity in uptake by organisms, highlighting the priority for more and better-informed laboratory exposure studies.


Subject(s)
Microplastics , Polymers , Water Pollutants, Chemical , Environmental Monitoring , Estuaries , Fresh Water , Geologic Sediments , Plastics , Water Pollutants, Chemical/analysis
5.
Polymers (Basel) ; 12(1)2020 Jan 10.
Article in English | MEDLINE | ID: mdl-32284516

ABSTRACT

In this work, a method to prepare hybrid amphiphilic block copolymers consisting of biocompatible synthetic glycopolymer with non-degradable backbone and biodegradable poly(amino acid) (PAA) was developed. The glycopolymer, poly(2-deoxy-2-methacrylamido-D-glucose) (PMAG), was synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization. Two methods for modifying the terminal dithiobenzoate-group of PMAG was investigated to obtain the macroinitiator bearing a primary aliphatic amino group, which is required for ring-opening polymerization of N-carboxyanhydrides of hydrophobic α-amino acids. The synthesized amphiphilic block copolymers were carefully analyzed using a set of different physico-chemical methods to establish their composition and molecular weight. The developed amphiphilic copolymers tended to self-assemble in nanoparticles of different morphology that depended on the nature of the hydrophobic amino acid present in the copolymer. The hydrodynamic diameter, morphology, and cytotoxicity of polymer particles based on PMAG-b-PAA were evaluated using dynamic light scattering (DLS) and transmission electron microscopy (TEM), as well as CellTiter-Blue (CTB) assay, respectively. The redox-responsive properties of nanoparticles were evaluated in the presence of glutathione taken at different concentrations. Moreover, the encapsulation of paclitaxel into PMAG-b-PAA particles and their cytotoxicity on human lung carcinoma cells (A549) and human breast adenocarcinoma cells (MCF-7) were studied.

SELECTION OF CITATIONS
SEARCH DETAIL