Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Genet ; 11: 1036, 2020.
Article in English | MEDLINE | ID: mdl-33133138

ABSTRACT

Novel targeted agents to inhibit DNA repair pathways to sensitize tumors to irradiation (IR) are being investigated as an alternative to chemoradiation for locally advanced human papilloma virus negative (HPV-negative) head and neck squamous cell carcinoma (HNSCC). Two well-characterized targets that, when inhibited, exhibit potent IR sensitization are PARP1 and DNA-PKcs. However, their cooperation in sensitizing HPV-negative HNSCC to IR remains to be explored given that PARP1 and DNA-Pk CS bind to unresected stalled DNA replication forks and cooperate to recruit XRCC1 to facilitate double-strand break repair. Here, we show that the combination of the DNA-PK inhibitor NU7441 and the PARP inhibitor olaparib significantly decrease proliferation (61-78%) compared to no reduction with either agent alone (p < 0.001) in both SCC1 and SCC6 cell lines. Adding IR to the combination further decreased cell proliferation (91-92%, p < 0.001) in SCC1 and SCC6. Similar results were observed using long-term colony formation assays [dose enhancement ratio (DER) 2.3-3.2 at 4Gy, p < 0.05]. Reduced cell survival was attributed to increased apoptosis and G2/M cell cycle arrest. Kinomic analysis using tyrosine (PTK) and serine/threonine (STK) arrays reveals that combination treatment results in the most potent inhibition of kinases involved in the CDK and ERK pathways compared to either agent alone. In vivo, a significant delay of tumor growth was observed in UM-SCC1 xenografts receiving IR with olaparib and/or NU7441, which was similar to the cisplatin-IR group. Both regimens were less toxic than cisplatin-IR as assessed by loss of mouse body weight. Taken together, these results demonstrate that the combination of NU7441 and olaparib with IR enhances HPV-negative HNSCC inhibition in both cell culture and in mice, suggesting a potential innovative combination for effectively treating patients with HPV-negative HNSCC.

2.
Bioorg Med Chem Lett ; 28(6): 1043-1049, 2018 04 01.
Article in English | MEDLINE | ID: mdl-29486970

ABSTRACT

A series of isoquinuclidine benzamides as glycine uptake inhibitors for the treatment of schizophrenia are described. Potency, lipophilicity, and intrinsic human microsomal clearance were parameters for optimization. Potency correlated with the nature of the ortho substituents of the benzamide ring, and reductions in lipophilicity could be achieved through heteroatom incorporation in the benzamide and pendant phenyl moieties. Improvements in human CLint were achieved through changes in ring size and the N-alkyl group of the isoquinuclidine itself, with des-alkyl derivatives (40-41, 44) demonstrating the most robust microsomal stability. Dimethylbenzamide 9 was tested in a mouse MK801 LMA assay and had a statistically significant attenuation of locomotor activity at 3 and 10 µmol/kg compared to control.


Subject(s)
Benzamides/pharmacology , Bridged Bicyclo Compounds/pharmacology , Glycine Plasma Membrane Transport Proteins/antagonists & inhibitors , Administration, Oral , Animals , Benzamides/administration & dosage , Benzamides/chemistry , Bridged Bicyclo Compounds/administration & dosage , Bridged Bicyclo Compounds/chemistry , Dose-Response Relationship, Drug , Humans , Injections, Intravenous , Locomotion/drug effects , Male , Mice , Molecular Structure , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...