Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters










Publication year range
1.
Int J Nanomedicine ; 13: 3689-3711, 2018.
Article in English | MEDLINE | ID: mdl-29983563

ABSTRACT

BACKGROUND: Adjuvants have the potential to increase the efficacy of protein-based vaccines but need to be maintained within specific temperature and storage conditions. Lyophilization can be used to increase the thermostability of protein pharmaceuticals; however, no marketed vaccine that contains an adjuvant is currently lyophilized, and lyophilization of oil-in-water nanoemulsion adjuvants presents a specific challenge. We have previously demonstrated the feasibility of lyophilizing a candidate adjuvanted protein vaccine against Mycobacterium tuberculosis (Mtb), ID93 + GLA-SE, and the subsequent improvement of thermostability; however, further development is required to prevent physicochemical changes and degradation of the TLR4 agonist glucopyranosyl lipid adjuvant formulated in an oil-in-water nanoemulsion (SE). MATERIALS AND METHODS: In this study, we took a systematic approach to the development of a thermostable product by first identifying compatible solution conditions and stabilizing excipients for both antigen and adjuvant. Next, we applied a design-of-experiments approach to identify stable lyophilized drug product formulations. RESULTS: We identified specific formulations that contain disaccharide or a combination of disaccharide and mannitol that can achieve substantially improved thermostability and maintain immunogenicity in a mouse model when tested in accelerated and real-time stability studies. CONCLUSION: These efforts will aid in the development of a platform formulation for use with other similar vaccines.


Subject(s)
Adjuvants, Immunologic/pharmacology , Emulsions/chemistry , Nanoparticles/chemistry , Temperature , Tuberculosis Vaccines/immunology , Animals , Antibody Formation , Chemistry, Pharmaceutical , Dynamic Light Scattering , Excipients , Female , Freeze Drying , Hydrogen-Ion Concentration , Immunity, Cellular , Lipids/chemistry , Mice, Inbred C57BL , Mycobacterium tuberculosis/immunology , Nephelometry and Turbidimetry , Particle Size , Tuberculosis/immunology , Tuberculosis/pathology
2.
AAPS PharmSciTech ; 18(6): 2077-2084, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28000085

ABSTRACT

Although substantial effort has been made in the development of next-generation recombinant vaccine systems, maintenance of a cold chain is still typically required and remains a critical challenge in effective vaccine distribution. The ability to engineer alternative containment systems that improve distribution and administration represents potentially significant enhancements to vaccination strategies. In this work, we evaluate the ability to successfully lyophilize a previously demonstrated thermostable tuberculosis vaccine formulation (ID93 + GLA-SE) in a cartridge format compared to a traditional vial container format. Due to differences in the shape of the container formats, a novel apparatus was developed to facilitate lyophilization in a cartridge. Following lyophilization, the lyophilizate was assessed visually, by determining residual moisture content, and by collecting melting profiles. Reconstituted formulations were assayed for particle size, protein presence, and GLA content. Based on assessment of the lyophilizate, the multicomponent vaccine was successfully lyophilized in both formats. Also, the physicochemical properties of the major components in the formulation, including antigen and adjuvant, were retained after lyophilization in either format. Ultimately, this study demonstrates that complex formulations can be lyophilized in alternative container formats to the standard pharmaceutical glass vial, potentially helping to increase the distribution of vaccines.


Subject(s)
Adjuvants, Immunologic/chemical synthesis , Chemistry, Pharmaceutical/instrumentation , Mycobacterium tuberculosis , Tuberculosis Vaccines/chemical synthesis , Chemistry, Pharmaceutical/methods , Freeze Drying/methods , Pharmaceutical Preparations
3.
Infect Immun ; 85(2)2017 02.
Article in English | MEDLINE | ID: mdl-27895131

ABSTRACT

Recent studies have shown that immune responses against the cell-traversal protein for Plasmodium ookinetes and sporozoites (CelTOS) can inhibit parasite infection. While these studies provide important evidence toward the development of vaccines targeting this protein, it remains unknown whether these responses could engage the Plasmodium falciparum CelTOS in vivo Using a newly developed rodent malaria chimeric parasite expressing the P. falciparum CelTOS (PfCelTOS), we evaluated the protective effect of in vivo immune responses elicited by vaccination and assessed the neutralizing capacity of monoclonal antibodies specific against PfCelTOS. Mice immunized with recombinant P. falciparum CelTOS in combination with the glucopyranosyl lipid adjuvant-stable emulsion (GLA-SE) or glucopyranosyl lipid adjuvant-liposome-QS21 (GLA-LSQ) adjuvant system significantly inhibited sporozoite hepatocyte infection. Notably, monoclonal antibodies against PfCelTOS strongly inhibited oocyst development of P. falciparum and Plasmodium berghei expressing PfCelTOS in Anopheles gambiae mosquitoes. Taken together, our results demonstrate that anti-CelTOS responses elicited by vaccination or passive immunization can inhibit sporozoite and ookinete infection and impair vector transmission.


Subject(s)
Antigens, Protozoan/immunology , Malaria Vaccines/immunology , Malaria, Falciparum/immunology , Malaria, Falciparum/parasitology , Plasmodium falciparum/immunology , Protozoan Proteins/immunology , Sporozoites/immunology , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/pharmacology , Antibodies, Protozoan/blood , Antibodies, Protozoan/immunology , Antigens, Protozoan/genetics , Disease Models, Animal , Hepatocytes/drug effects , Hepatocytes/parasitology , Immunization , Immunization, Passive , Life Cycle Stages , Malaria, Falciparum/prevention & control , Malaria, Falciparum/transmission , Mice , Plasmodium falciparum/growth & development , Protozoan Proteins/genetics , Recombinant Proteins
4.
Hum Vaccin Immunother ; 12(4): 1009-26, 2016 04 02.
Article in English | MEDLINE | ID: mdl-26618392

ABSTRACT

Millions of seasonal and pandemic influenza vaccine doses containing oil-in-water emulsion adjuvant have been administered in order to enhance and broaden immune responses and to facilitate antigen sparing. Despite the enactment of a Global Action Plan for Influenza Vaccines and a multi-fold increase in production capabilities over the past 10 years, worldwide capacity for pandemic influenza vaccine production is still limited. In developing countries, where routine influenza vaccination is not fully established, additional measures are needed to ensure adequate supply of pandemic influenza vaccines without dependence on the shipment of aid from other, potentially impacted first-world countries. Adaptation of influenza vaccine and adjuvant technologies by developing country influenza vaccine manufacturers may enable antigen sparing and corresponding increases in global influenza vaccine coverage capacity. Following on previously described work involving the technology transfer of oil-in-water emulsion adjuvant manufacturing to a Romanian vaccine manufacturing institute, we herein describe the preclinical evaluation of inactivated split virion H5N1 influenza vaccine with emulsion adjuvant, including immunogenicity, protection from virus challenge, antigen sparing capacity, and safety. In parallel with the evaluation of the bioactivity of the tech-transferred adjuvant, we also describe the impact of concurrent antigen manufacturing optimization activities. Depending on the vaccine antigen source and manufacturing process, inclusion of adjuvant was shown to enhance and broaden functional antibody titers in mouse and rabbit models, promote protection from homologous virus challenge in ferrets, and facilitate antigen sparing. Besides scientific findings, the operational lessons learned are delineated in order to facilitate adaptation of adjuvant technologies by other developing country institutes to enhance global pandemic influenza preparedness.


Subject(s)
Adjuvants, Immunologic , Influenza A Virus, H5N1 Subtype/immunology , Influenza Vaccines , Technology Transfer , Drug Evaluation, Preclinical , Emulsions/chemistry , Humans , Influenza A Virus, H5N1 Subtype/physiology , Influenza Vaccines/immunology , Influenza, Human/immunology , Influenza, Human/prevention & control , Oils , Pandemics/prevention & control , Romania , Virion/physiology , Virus Inactivation
5.
J Pharm Sci ; 104(2): 768-74, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25242027

ABSTRACT

Aluminum salts have a long history as safe and effective vaccine adjuvants. In addition, aluminum salts have high adsorptive capacities for vaccine antigens and adjuvant molecules, for example, Toll-like receptor 4 (TLR4) agonists. However, the physicochemical properties of aluminum salts make direct quantitation of adsorbed molecules challenging. Typical methods for quantifying adsorbed molecules require advanced instrumentation, extreme sample processing, often destroy the sample, or rely on an indirect measurement. A simple, direct, and quantitative method for analysis of adsorbed adjuvant molecules is needed. This report presents a method utilizing Fourier transform infrared spectroscopy with a ZnSe-attenuated total reflectance attachment to directly measure low levels (<30 µg/mL) of TLR4 agonists adsorbed on aluminum salts with minimal sample preparation.


Subject(s)
Aluminum Hydroxide/analysis , Glucosides/analysis , Lipid A/analysis , Spectroscopy, Fourier Transform Infrared/methods , Toll-Like Receptor 4/agonists , Adsorption , Aluminum Hydroxide/metabolism , Glucosides/metabolism , Lipid A/metabolism
6.
PLoS One ; 9(9): e107764, 2014.
Article in English | MEDLINE | ID: mdl-25247295

ABSTRACT

The circumsporozoite protein (CSP) of Plasmodium falciparum is a major surface protein, which forms a dense coat on the sporozoite's surface. Preclinical research on CSP and clinical evaluation of a CSP fragment-based RTS, S/AS01 vaccine have demonstrated a modest degree of protection against P. falciparum, mediated in part by humoral immunity and in part by cell-mediated immunity. Given the partial protective efficacy of the RTS, S/AS01 vaccine in a recent Phase 3 trial, further improvement of CSP-based vaccines is crucial. In this report, we describe the preclinical development of a full-length, recombinant CSP (rCSP)-based vaccine candidate against P. falciparum malaria suitable for current Good Manufacturing Practice (cGMP) production. Utilizing a novel high-throughput Pseudomonas fluorescens expression platform, we demonstrated greater efficacy of full-length rCSP as compared to N-terminally truncated versions, rapidly down-selected a promising lead vaccine candidate, and developed a high-yield purification process to express immunologically active, intact antigen for clinical trial material production. The rCSP, when formulated with various adjuvants, induced antigen-specific antibody responses as measured by enzyme-linked immunosorbent assay (ELISA) and immunofluorescence assay (IFA), as well as CD4+ T-cell responses as determined by ELISpot. The adjuvanted rCSP vaccine conferred protection in mice when challenged with transgenic P. berghei sporozoites containing the P. falciparum repeat region of CSP. Furthermore, heterologous prime/boost regimens with adjuvanted rCSP and an adenovirus type 35-vectored CSP (Ad35CS) showed modest improvements in eliciting CSP-specific T-cell responses and anti-malarial protection, depending on the order of vaccine delivery. Collectively, these data support the importance of further clinical development of adjuvanted rCSP, either as a stand-alone product or as one of the components in a heterologous prime/boost strategy, ultimately acting as an effective vaccine candidate for the mitigation of P. falciparum-induced malaria.


Subject(s)
Malaria Vaccines/administration & dosage , Malaria, Falciparum/prevention & control , Plasmodium falciparum/immunology , Protozoan Proteins/metabolism , Pseudomonas fluorescens/genetics , Recombinant Proteins/metabolism , Adjuvants, Immunologic/pharmacology , Animals , Disease Models, Animal , Female , Hep G2 Cells , Humans , Malaria Vaccines/chemistry , Malaria, Falciparum/immunology , Mice , Mice, Inbred C57BL , Organisms, Genetically Modified , Protozoan Proteins/genetics , Pseudomonas fluorescens/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Vaccination/methods
7.
Int J Nanomedicine ; 9: 1367-77, 2014.
Article in English | MEDLINE | ID: mdl-24648734

ABSTRACT

Development of lipid-based adjuvant formulations to enhance the immunogenicity of recombinant vaccine antigens is a focus of modern vaccine research. Characterizing interactions between vaccine antigens and formulation excipients is important for establishing compatibility between the different components and optimizing vaccine stability and potency. Cryogenic transmission electron microscopy (TEM) is a highly informative analytical technique that may elucidate various aspects of protein- and lipid-based structures, including morphology, size, shape, and phase structure, while avoiding artifacts associated with staining-based TEM. In this work, cryogenic TEM is employed to characterize a recombinant tuberculosis vaccine antigen, an anionic liposome formulation, and antigen-liposome interactions. By performing three-dimensional tomographic reconstruction analysis, the formation of a population of protein-containing flattened liposomes, not present in the control samples, was detected. It is shown that cryogenic TEM provides unique information regarding antigen-liposome interactions not detectable by light-scattering-based methods. Employing a suite of complementary analytical techniques is important to fully characterize interactions between vaccine components.


Subject(s)
Antigens, Bacterial/chemistry , Tuberculosis Vaccines/immunology , Adjuvants, Immunologic/administration & dosage , Animals , Antigens, Bacterial/ultrastructure , Cryoelectron Microscopy , Humans , Imaging, Three-Dimensional , Liposomes/administration & dosage , Liposomes/chemistry , Nanomedicine , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Particle Size , Tuberculosis Vaccines/administration & dosage , Tuberculosis Vaccines/chemistry , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/chemistry , Vaccines, Synthetic/immunology
8.
J Control Release ; 177: 20-6, 2014 Mar 10.
Article in English | MEDLINE | ID: mdl-24382398

ABSTRACT

Next-generation rationally-designed vaccine adjuvants represent a significant breakthrough to enable development of vaccines against challenging diseases including tuberculosis, HIV, and malaria. New vaccine candidates often require maintenance of a cold-chain process to ensure long-term stability and separate vials to enable bedside mixing of antigen and adjuvant. This presents a significant financial and technological barrier to worldwide implementation of such vaccines. Herein we describe the development and characterization of a tuberculosis vaccine comprised of both antigen and adjuvant components that are stable in a single vial at sustained elevated temperatures. Further this vaccine retains the ability to elicit both antibody and TH1 responses against the vaccine antigen and protect against experimental challenge with Mycobacterium tuberculosis. These results represent a significant breakthrough in the development of vaccine candidates that can be implemented throughout the world without being hampered by the necessity of a continuous cold chain or separate adjuvant and antigen vials.


Subject(s)
Adjuvants, Immunologic/administration & dosage , Antigens, Bacterial/administration & dosage , Nanostructures/administration & dosage , Tuberculosis Vaccines/administration & dosage , Tuberculosis/prevention & control , Adjuvants, Immunologic/chemistry , Animals , Antibodies, Bacterial/immunology , Antigens, Bacterial/chemistry , B-Lymphocytes/immunology , Bacterial Load , Emulsions , Female , Freeze Drying , Leukocyte Count , Lung/microbiology , Mice , Mice, Inbred C57BL , Mycobacterium tuberculosis/immunology , Nanostructures/chemistry , Spleen/microbiology , T-Lymphocytes/immunology , Temperature , Tuberculosis/immunology , Tuberculosis/microbiology , Tuberculosis Vaccines/chemistry
9.
J Pharm Sci ; 103(3): 879-89, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24464844

ABSTRACT

Activity of adjuvanted vaccines is difficult to predict in vitro and in vivo. The wide compositional and conformational range of formulated adjuvants, from aluminum salts to oil-in-water emulsions, makes comparisons between physicochemical and immunological properties difficult. Even within a formulated adjuvant class, excipient selection and concentration can alter potency and physicochemical properties of the mixture. Complete characterization of physicochemical properties of adjuvanted vaccine formulations and relationship to biological response is necessary to move beyond a guess-and-check paradigm toward directed development. Here we present a careful physicochemical characterization of a two-component nanosuspension containing synthetic TLR-4 agonist glucopyranosyl lipid adjuvant (GLA) and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) at various molar ratios. Physicochemical properties were compared with potency, as measured by stimulation of cytokine production in human whole blood. We found a surprising, nonlinear relationship between physicochemical properties and GLA-DPPC ratios that corresponded well with changes in biological activity. We discuss these data in light of the current understanding of TLR4 activation and the conformation-potency relationship in development of adjuvanted vaccines.


Subject(s)
1,2-Dipalmitoylphosphatidylcholine/chemistry , Adjuvants, Immunologic/chemistry , Disaccharides/chemistry , Lipid A/analogs & derivatives , Myristates/chemistry , Nanostructures/chemistry , Toll-Like Receptor 4/agonists , 1,2-Dipalmitoylphosphatidylcholine/pharmacology , Acylation , Adjuvants, Immunologic/pharmacology , Blood Cells/drug effects , Blood Cells/immunology , Blood Cells/metabolism , Chemical Phenomena , Cytokines/agonists , Cytokines/metabolism , Disaccharides/pharmacology , Drug Combinations , Humans , Interferon-gamma Release Tests , Lipid A/chemistry , Lipid A/pharmacology , Myristates/pharmacology , Osmolar Concentration , Particle Size , Phosphorylation , Surface Properties , Suspensions , Transition Temperature
10.
Colloids Surf B Biointerfaces ; 113: 312-9, 2014 Jan 01.
Article in English | MEDLINE | ID: mdl-24121074

ABSTRACT

Effective in vitro evaluation of vaccine adjuvants would allow higher throughput screening compared to in vivo studies. However, vaccine adjuvants comprise a wide range of structures and formulations ranging from soluble TLR agonists to complex lipid-based formulations. The effects of formulation parameters on in vitro bioactivity assays and the correlations with in vivo adjuvant activity is not well understood. In the present work, we employ the Limulus amebocyte lysate assay and a human macrophage cellular cytokine production assay to demonstrate the differences in in vitro bioactivity of four distinct formulations of the synthetic TLR4 agonist GLA: an aqueous nanosuspension (GLA-AF), an oil-in-water emulsion (GLA-SE), a liposome (GLA-LS), and an alum-adsorbed formulation (GLA-Alum). Furthermore, we demonstrate the importance of the localization of GLA on in vitro potency. By comparing to previous published reports on the in vivo bioactivity of these GLA-containing formulations, we conclude that the most potent activators of the in vitro systems may not be the most potent in vivo adjuvant formulations. Furthermore, we discuss the formulation considerations which should be taken into account when interpreting data from in vitro adjuvant activity assays.


Subject(s)
Adjuvants, Immunologic/chemistry , Adjuvants, Immunologic/pharmacology , Toll-Like Receptor 4/agonists , Particle Size
11.
J Nanobiotechnology ; 11: 43, 2013 Dec 21.
Article in English | MEDLINE | ID: mdl-24359024

ABSTRACT

BACKGROUND: Nanosuspensions are an important class of delivery system for vaccine adjuvants and drugs. Previously, we developed a nanosuspension consisting of the synthetic TLR4 ligand glucopyranosyl lipid adjuvant (GLA) and dipalmitoyl phosphatidylcholine (DPPC). This nanosuspension is a clinical vaccine adjuvant known as GLA-AF. We examined the effects of DPPC supplier, buffer composition, and manufacturing process on GLA-AF physicochemical and biological activity characteristics. RESULTS: DPPC from different suppliers had minimal influence on physicochemical and biological effects. In general, buffered compositions resulted in less particle size stability compared to unbuffered GLA-AF. Microfluidization resulted in rapid particle size reduction after only a few passes, and 20,000 or 30,000 psi processing pressures were more effective at reducing particle size and recovering the active component than 10,000 psi. Sonicated and microfluidized batches maintained good particle size and chemical stability over 6 months, without significantly altering in vitro or in vivo bioactivity of GLA-AF when combined with a recombinant malaria vaccine antigen. CONCLUSIONS: Microfluidization, compared to water bath sonication, may be an effective manufacturing process to improve the scalability and reproducibility of GLA-AF as it advances further in the clinical development pathway. Various sources of DPPC are suitable to manufacture GLA-AF, but buffered compositions of GLA-AF do not appear to offer stability advantages over the unbuffered composition.


Subject(s)
Adjuvants, Immunologic/chemistry , Antigens, Protozoan/immunology , Malaria Vaccines/immunology , Malaria/prevention & control , Nanostructures/chemistry , Protozoan Proteins/immunology , 1,2-Dipalmitoylphosphatidylcholine/chemistry , Adjuvants, Immunologic/pharmacology , Adjuvants, Immunologic/standards , Animals , Antigens, Protozoan/chemistry , Antigens, Protozoan/genetics , Buffers , Cytokines/biosynthesis , Cytokines/immunology , Drug Stability , Female , Lipid A/analogs & derivatives , Lipid A/chemistry , Lipid A/immunology , Lymphocytes/drug effects , Lymphocytes/immunology , Macrophages/drug effects , Macrophages/immunology , Malaria/immunology , Malaria Vaccines/administration & dosage , Malaria Vaccines/biosynthesis , Mice , Mice, Inbred C57BL , Nanostructures/standards , Particle Size , Plasmodium berghei/immunology , Protozoan Proteins/chemistry , Protozoan Proteins/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Sonication , Suspensions , Toll-Like Receptor 4/immunology
12.
Vaccine ; 31(49): 5848-55, 2013 Dec 02.
Article in English | MEDLINE | ID: mdl-24120675

ABSTRACT

The formulation of TLR ligands and other immunomodulators has a critical effect on their vaccine adjuvant activity. In this work, the synthetic TLR4 ligand GLA was formulated with three distinct vaccine delivery system platforms (aqueous suspension, liposome, or oil-in-water emulsion). The effect of the different formulations on the adaptive immune response to protein subunit vaccines was evaluated in the context of a recombinant malaria antigen, Plasmodium berghei circumsporozoite protein (PbCSP). Antibody responses in vaccinated mice were similar for the different formulations of GLA. However, cell-mediated responses differed significantly depending on the adjuvant system; in particular, the emulsion formulation of the TLR4 ligand induced significantly enhanced cellular IFN-γ and TNF-α responses compared to the other formulations. The effects of differences in adjuvant formulation composition and physical characteristics on biological activity are discussed. These results illustrate the importance of formulation of immunostimulatory adjuvants (e.g. TLR ligands) on the resulting immune responses to adjuvanted vaccines and may play a critical role for combating diseases where T cell immunity is advantageous.


Subject(s)
Adjuvants, Immunologic/pharmacology , Antigens, Protozoan/immunology , Malaria Vaccines/immunology , Toll-Like Receptor 4/agonists , Adaptive Immunity , Animals , Female , Immunity, Cellular , Immunity, Humoral , Interferon-gamma/immunology , Ligands , Mice , Mice, Inbred C57BL , Plasmodium berghei/immunology , T-Lymphocytes/immunology , Toll-Like Receptor 4/immunology , Tumor Necrosis Factor-alpha/immunology , Vaccines, Subunit/immunology
13.
J Control Release ; 172(1): 190-200, 2013 Nov 28.
Article in English | MEDLINE | ID: mdl-23933525

ABSTRACT

One third of the world is infected with Mycobacterium tuberculosis (Mtb) with eight million new cases of active tuberculosis (TB) each year. Development of a new vaccine to augment or replace the only approved TB vaccine, BCG, is needed to control this disease. Mtb infection is primarily controlled by TH1 cells through the production of IFN-γ and TNF which activate infected macrophages to kill the bacterium. Here we examine an array of adjuvant formulations containing the TLR4 agonist GLA to identify candidate adjuvants to pair with ID93, a lead TB vaccine antigen, to elicit protective TH1 responses. We evaluate a variety of adjuvant formulations including alum, liposomes, and oil-in-water emulsions to determine how changes in formulation composition alter adjuvant activity. We find that alum and an aqueous nanosuspension of GLA synergize to enhance generation of ID93-specific TH1 responses, whereas neither on their own are effective adjuvants for generation of ID93-specific TH1 responses. For GLA containing oil-in-water emulsions, the selection of the oil component is critical for adjuvant activity, whereas a variety of lipid components may be used in liposomal formulations of GLA. The composition of the liposome formulation of ID93/GLA does alter the magnitude of the TH1 response. These results demonstrate that there are multiple solutions for an effective formulation of a novel TB vaccine candidate that enhances both TH1 generation and protective efficacy.


Subject(s)
Adjuvants, Immunologic/chemistry , Adjuvants, Immunologic/pharmacology , Mycobacterium tuberculosis/immunology , Tuberculosis Vaccines/pharmacology , Tuberculosis/prevention & control , Alum Compounds/chemistry , Alum Compounds/pharmacology , Animals , Female , Glucosides/chemistry , Glucosides/pharmacology , Humans , Immunization , Lipids/chemistry , Lipids/pharmacology , Liposomes/chemistry , Mice , Mice, Inbred C57BL , Th1 Cells/immunology , Toll-Like Receptor 4/agonists , Tuberculosis/immunology , Tuberculosis Vaccines/immunology
14.
Vaccine ; 31(9): 1298-304, 2013 Feb 18.
Article in English | MEDLINE | ID: mdl-23313617

ABSTRACT

Six different adjuvants, each in combination with inactivated polio vaccine (IPV) produced with attenuated Sabin strains (sIPV), were evaluated for their ability to enhance virus neutralizing antibody titres (VNTs) in the rat potency model. The increase of VNTs was on average 3-, 15-, 24-fold with adjuvants after one immunization (serotypes 1, 2, and 3, respectively). Also after a boost immunization the VNTs of adjuvanted sIPV were on average another 7-20-27 times higher than after two inoculations of sIPV without adjuvant. The results indicate that it is feasible to increase the potency of inactivated polio vaccines by using adjuvants.


Subject(s)
Adjuvants, Immunologic/administration & dosage , Poliovirus Vaccines/administration & dosage , Poliovirus Vaccines/immunology , Poliovirus/immunology , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Neutralization Tests , Poliovirus Vaccine, Inactivated/administration & dosage , Poliovirus Vaccine, Inactivated/immunology , Rats
15.
Influenza Other Respir Viruses ; 7(5): 815-26, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23122325

ABSTRACT

BACKGROUND: Adjuvant formulations are critical components of modern vaccines based on recombinant proteins, which are often poorly immunogenic without additional immune stimulants. Oil-in-water emulsions comprise an advanced class of vaccine adjuvants that are components of approved seasonal and pandemic influenza vaccines. However, few reports have been published that systematically evaluate the in vitro stability and in vivo adjuvant effects of different emulsion components. OBJECTIVES: To evaluate distinct classes of surfactants, oils, and excipients, for their effects on emulsion particle size stability, antigen structural interactions, and in vivo activity when formulated with a recombinant H5N1 antigen. METHODS: Emulsions were manufactured by high pressure homogenization and characterized alone or in the presence of vaccine antigen by dynamic light scattering, zeta potential, viscosity, pH, hemolytic activity, electron microscopy, fluorescence spectroscopy, and SDS-PAGE. In vivo vaccine activity in the murine model was characterized by measuring antibody titers, antibody-secreting plasma cells, hemagglutination inhibition titers, and cytokine production. RESULTS: We demonstrate that surfactant class and presence of additional excipients are not critical for biological activity, whereas oil structure is crucial. Moreover, we report that simplified two-component emulsions appear more stable by particle size than more complex formulations.Finally, differences in antigen structural interactions with the various emulsions do not appear to correlate with in vivo activity. CONCLUSIONS: Oil-in-water emulsions can significantly enhance antibody and cellular immune responses to a pandemic influenza antigen. The dramatic differences in adjuvant activity between squalene-based emulsion and medium chain triglyceride-based emulsion are due principally to the biological activity of the oil composition rather than physical interactions of the antigen with the emulsion.


Subject(s)
Adjuvants, Immunologic/chemistry , Antigens, Viral/chemistry , Antigens, Viral/immunology , Influenza A Virus, H5N1 Subtype/immunology , Influenza Vaccines/chemistry , Influenza Vaccines/immunology , Animals , Antibodies, Viral/immunology , Chemistry, Pharmaceutical , Cytokines/immunology , Emulsions/chemistry , Female , Humans , Hydrogen-Ion Concentration , Influenza, Human/immunology , Influenza, Human/prevention & control , Influenza, Human/virology , Mice , Mice, Inbred C57BL , Pandemics , Viscosity
16.
Ther Adv Vaccines ; 1(1): 7-20, 2013 May.
Article in English | MEDLINE | ID: mdl-24757512

ABSTRACT

The development of vaccines containing adjuvants has the potential to enhance antibody and cellular immune responses, broaden protective immunity against heterogeneous pathogen strains, enable antigen dose sparing, and facilitate efficacy in immunocompromised populations. Nevertheless, the structural interplay between antigen and adjuvant components is often not taken into account in the published literature. Interactions between antigen and adjuvant formulations should be well characterized to enable optimum vaccine stability and efficacy. This review focuses on the importance of characterizing antigen-adjuvant interactions by summarizing findings involving widely used adjuvant formulation platforms, such as aluminum salts, emulsions, lipid vesicles, and polymer-based particles. Emphasis is placed on the physicochemical basis of antigen-adjuvant associations and the appropriate analytical tools for their characterization, as well as discussing the effects of these interactions on vaccine potency.

17.
Clin Vaccine Immunol ; 19(10): 1633-40, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22896687

ABSTRACT

New malaria vaccines are urgently needed to improve vaccine protective efficacy. PfCelTOS is a recombinant malaria vaccine antigen that has shown protective efficacy in a small-animal challenge model when combined with a water-in-oil emulsion adjuvant (Montanide ISA 720). In this report, we show that PfCelTOS vaccines containing GLA-SE (a stable oil-in-water emulsion combined with a Toll-like receptor 4 [TLR4] agonist) elicit strong Th1-type immune responses in BALB/c mice. These responses include higher antigen-specific IgG2a antibody titers and more gamma interferon (IFN-γ) production than those seen with a PfCelTOS vaccine containing Montanide ISA 720. Furthermore, reducing the emulsion dose from 2% to 1% or 0.5% (vol/vol) squalene in GLA-SE did not compromise immunogenicity. Emulsion dose titration in the absence of formulated GLA caused some reduction in humoral and cellular immune responses compared to those with the 2% squalene emulsion dose.


Subject(s)
Adjuvants, Immunologic , Antibodies, Protozoan/blood , Malaria Vaccines/immunology , Plasmodium falciparum/immunology , Adjuvants, Immunologic/administration & dosage , Animals , Antigens, Protozoan/immunology , Emulsions , Female , Immunity, Cellular , Immunoglobulin G/blood , Interferon-gamma/blood , Malaria Vaccines/administration & dosage , Mannitol/analogs & derivatives , Mannitol/immunology , Mice , Mice, Inbred BALB C , Nanoparticles , Oleic Acids/immunology , Squalene , Th1 Cells/immunology , Toll-Like Receptor 4/agonists , Toll-Like Receptor 4/immunology , Vaccines, Synthetic/immunology
18.
AAPS PharmSciTech ; 13(2): 498-506, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22415641

ABSTRACT

Egg phosphatidylcholine is commonly used as an emulsifier in formulations administered parenterally. However, synthetic phosphatidylcholine (PC) emulsifiers are now widely available and may be desirable substitutes for egg-derived phospholipids due to stability, purity, and material source considerations. In earlier work, we demonstrated that a squalene-1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) emulsion provided equivalent physical stability compared to a squalene-egg PC emulsion. In the present manuscript, we evaluate the physical stability of vaccine adjuvant emulsions containing a range of other synthetic phosphatidylcholine emulsifiers. Besides the POPC emulsion, the 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) emulsion showed good particle size and visual stability compared to emulsions made with other synthetic phospholipids. Moreover, comparable immune responses were elicited by squalene emulsions employing various synthetic PC or egg PC emulsifiers in combination with an inactivated influenza vaccine or a recombinant malaria antigen, and these responses were generally enhanced compared to antigen without adjuvant. Therefore, we show that (1) some synthetic PCs (DMPC, POPC, and to a lesser extent 1,2-dioleoyl-sn-glycero-3-phosphocholine) are effective stabilizers of squalene emulsion over a range of storage temperatures while others are not (1,2-distearoyl-sn-glycero-3-phosphocholine, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine, and 1,2-dilauroyl-sn-glycero-3-phosphocholine) and (2) the immunogenicity of stable squalene emulsions is similar regardless of PC source.


Subject(s)
Adjuvants, Immunologic , Emulsifying Agents/immunology , Influenza Vaccines/immunology , Malaria Vaccines/immunology , Phosphatidylcholines/immunology , Adjuvants, Immunologic/administration & dosage , Adjuvants, Immunologic/chemistry , Animals , Antibodies/blood , Chemistry, Pharmaceutical , Dimyristoylphosphatidylcholine/chemistry , Dimyristoylphosphatidylcholine/immunology , Drug Stability , Emulsifying Agents/administration & dosage , Emulsifying Agents/chemistry , Emulsions , Female , Humans , Immunization , Influenza Vaccines/administration & dosage , Influenza Vaccines/chemistry , Injections, Intramuscular , Malaria Vaccines/administration & dosage , Malaria Vaccines/chemistry , Mice , Mice, Inbred BALB C , Particle Size , Phosphatidylcholines/administration & dosage , Phosphatidylcholines/chemistry , Squalene/chemistry , Squalene/immunology , Technology, Pharmaceutical/methods , Time Factors
19.
Vaccine ; 29(51): 9563-72, 2011 Nov 28.
Article in English | MEDLINE | ID: mdl-21906648

ABSTRACT

Squalene-based oil-in-water emulsions have been used for years in some seasonal and pandemic influenza vaccines. However, concerns have been expressed regarding squalene source and potential biological activities. Little information is available regarding the immunomodulatory activity of squalene in comparison with other metabolizable oils in the context of oil-in-water emulsions formulated with vaccines. The present work describes the manufacture and physical characterization of emulsions composed of different classes of oils, including squalene, long chain triglycerides, a medium chain triglyceride, and a perfluorocarbon, all emulsified with egg phosphatidylcholine. Some differences were apparent among the non-squalene oils in terms of emulsion stability, including higher size polydispersity in the perfluorocarbon emulsion, more rapid visual instability at 60°C for the long-chain triglyceride and perfluorocarbon emulsions, and an increased creaming rate in the medium-chain triglyceride emulsion at 60°C as detected by laser scattering optical profiling. The biological activity of each of these emulsions was compared when formulated with either a recombinant malaria antigen or a split-virus inactivated influenza vaccine. Overall, vaccines containing the squalene emulsion elicited higher antibody titers and more abundant long-lived plasma cells than vaccines containing emulsions based on other oils. Since squalene-based emulsions show higher adjuvant potency compared to the other oils tested, non-squalene oils may be more suitable as carriers of amphiphilic or hydrophobic immunostimulatory molecules (such as TLR agonists) rather than as stand-alone adjuvants.


Subject(s)
Adjuvants, Immunologic , Oils , Viral Vaccines/immunology , Adjuvants, Immunologic/adverse effects , Adjuvants, Immunologic/chemistry , Antibodies, Viral/biosynthesis , Eggs , Emulsions , Fluorocarbons/adverse effects , Fluorocarbons/immunology , Humans , Immunologic Factors , Oils/adverse effects , Phosphatidylcholines/immunology , Squalene/adverse effects , Squalene/immunology
20.
Clin Vaccine Immunol ; 18(7): 1118-24, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21632891

ABSTRACT

A subunit vaccine using a defined antigen(s) may be one effective solution for controlling leishmaniasis. Because of genetic diversity in target populations, including both dogs and humans, a multiple-antigen vaccine will likely be essential. However, the cost of a vaccine to be used in developing countries must be considered. We describe herein a multiantigen vaccine candidate comprised of antigens known to be protective in animal models, including dogs, and to be recognized by humans immune to visceral leishmaniasis. The polyprotein (KSAC) formulated with monophosphoryl lipid A, a widely used adjuvant in human vaccines, was found to be immunogenic and capable of inducing protection against Leishmania infantum, responsible for human and canine visceral leishmaniasis, and against L. major, responsible for cutaneous leishmaniasis. The results demonstrate the feasibility of producing a practical, cost-effective leishmaniasis vaccine capable of protecting both humans and dogs against multiple Leishmania species.


Subject(s)
Leishmaniasis, Visceral/prevention & control , Polyproteins/therapeutic use , Adjuvants, Immunologic , Animals , Antibodies, Protozoan , Antigens, Protozoan , Dogs , Humans , Leishmania infantum/immunology , Leishmaniasis, Cutaneous/immunology , Leishmaniasis, Visceral/immunology , Leishmaniasis, Visceral/veterinary , Lipid A/analogs & derivatives , Polyproteins/immunology , Protozoan Vaccines
SELECTION OF CITATIONS
SEARCH DETAIL
...