Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Aquat Toxicol ; 256: 106417, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36805195

ABSTRACT

Cyanobacteria are ubiquitously globally present in both freshwater and marine environments. Ample reports have been documented by researchers worldwide for pros and cons of cyanobacterial toxins. The implications of cyanobacterial toxin on health have received much attention in recent decades. Microcystins (MCs) represent the unique class of toxic metabolites produced by cyanobacteria. Although the beneficial aspects of cyanobacterial are numerous, the deleterious effect of MCs overlooked. Several studies on MCs evidently reported that MCs exhibit a plethora of harmful effect on animals, plants, and cell lines. Accordingly, numerous histopathological studies have also found that MCs cause detrimental effects to cells by damaging cellular organelles, including nuclear envelope, Golgi apparatus, endoplasmic reticulum, mitochondria, plastids, flagellum, pilus membrane structures and integrity, vesicle structures, and autolysosomes and autophagosomes. Such ultrastructural cellular damages holistically influence the morphological, biochemical, physiological, and genetic status of the host. Indeed, MCs have also been found to cause the deleterious effect to different animals and plants. Such deleterious effects of MCs have greater impact on agriculture, public health which in turn influences ecotoxicology and economic consequences. The impairments correspond to oxidative stress, organ failure, carcinogenesis, aquaculture loss, with an emphasis for blooms and respective bioaccumulation prospects. The preservation of mortality among life forms is addressed in a critical cellular perspective for multitude benefits. The comprehensive cellular assessment could provide opportunity to develop strategy for therapeutic implications.


Subject(s)
Cyanobacteria , Water Pollutants, Chemical , Animals , Microcystins/metabolism , Ecotoxicology , Water Pollutants, Chemical/toxicity , Cyanobacteria Toxins , Cyanobacteria/metabolism
2.
Front Microbiol ; 13: 943278, 2022.
Article in English | MEDLINE | ID: mdl-36177463

ABSTRACT

Cell-to-cell communication is a fundamental process of bacteria to exert communal behaviors. Sputum samples of patients with cystic fibrosis have often been observed with extensive mycobacterial genetic diversity. The emergence of heterogenic mycobacterial populations is observed due to subtle changes in their morphology, gene expression level, and distributive conjugal transfer (DCT). Since each subgroup of mycobacteria has different hetero-resistance, they are refractory against several antibiotics. Such genetically diverse mycobacteria have to communicate with each other to subvert the host immune system. However, it is still a mystery how such heterogeneous strains exhibit synchronous behaviors for the production of quorum sensing (QS) traits, such as biofilms, siderophores, and virulence proteins. Mycobacteria are characterized by division of labor, where distinct sub-clonal populations contribute to the production of QS traits while exchanging complimentary products at the community level. Thus, active mycobacterial cells ensure the persistence of other heterogenic clonal populations through cooperative behaviors. Additionally, mycobacteria are likely to establish communication with neighboring cells in a contact-independent manner through QS signals. Hence, this review is intended to discuss our current knowledge of mycobacterial communication. Understanding mycobacterial communication could provide a promising opportunity to develop drugs to target key pathways of mycobacteria.

3.
Chemosphere ; 285: 131436, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34256200

ABSTRACT

Microalgal biomass and its fine chemical production from microalgae have pioneered algal bioprocess technology with few limitations such as lab-to-industry. However, laboratory-scale transitions and industrial applications are hindered by a plethora of limitations comprising expensive in culturing methods. Therefore, to emphasize the profitable benefits, the algal culturing techniques appropriately employed for large-scale microalgal biomass yield necessitates intricate assessment to emphasize the profitable benefits. The present review holistically compiles the culturing strategies for improving microalgal biomass production based on appropriate factors like designing better bioreactor designs. On the other hand, synthetic biology approaches for abridging the effective industrial transition success explored recently. Prospects in synthetic biology for enhanced microalgal biomass production based on cultivation strategies and various mechanistic modes approach to enrich cost-effective and viable output are discussed. The State-of-the-art culturing techniques encompassing enhancement of photosynthetic activity, designing bioreactor design, and potential augmenting protocols for biomass yield employing indoor cultivation in both (Open and or/closed) methods are enumerated. Further, limitations hindering the microalgal bioproducts development are critically evaluated for improving culturing techniques for microalgal cell factories, subsequently escalating the cost-benefit ratio in bioproducts synthesis from microalgae. The comprehensive analysis could provide a rational and deeper detailed insight for microalgal entrepreneurs through alternative culturing technology viz., synthetic biology and genome engineering in an Industrial perspective arena.


Subject(s)
Microalgae , Biofuels , Biomass , Bioreactors , Photosynthesis
4.
Pharm Biol ; 52(10): 1291-301, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25026331

ABSTRACT

CONTEXT: Marine cyanobacteria offer considerable potential to isolate new antimalarials to meet a pressing need of our times. OBJECTIVE: To explore the antiplasmodial properties of marine cyanobacteria. MATERIALS AND METHODS: Cyanobacterial samples collected from the coastal regions of Tamil Nadu were identified using light microscopy, and the strains were cultivated in ASN-III medium. Organic extracts (0-100 µg mL(-1)) of 25 in vitro mass-cultivated cyanobacteria, prepared using methanol: chloroform mixture (1:1 v/v) were evaluated for their antiplasmodial activity against chloroquine-sensitive and -resistant strains of Plasmodium falciparum by fluorescence-based SYBR Green I assay where chloroquine was used as a control. To detect the toxic effects of cyanobacterial extracts against red blood cells, the invasion, maturation, and growth rate of malarial parasites in cyanobacterial extracts pre-treated versus untreated erythrocytes were quantified microscopically. Mammalian cell line (HeLa) was used to determine cyanobacterial extract toxicity using the MTT assay. RESULTS: The extracts of Lyngbya aestuarii Liebm. ex Gomont CNP 1005 (C12) Oscillatoria boryana BDU 91451 (C22) and Oscillatoria boryana Bory ex Gomont BDU 141071 (C18) showed promising antiplasmodial activity (IC50 = 18, 18, and 51 µg mL(-1) respectively) against Pf3D7. Pretreatment of red blood cells with IC100 of C12, C18, and C22 (40, 100, and 40 µgmL(-1), respectively) did not significantly influence the invasion, maturation, and growth rate of malarial parasites in comparison with untreated RBC controls suggesting a lack of toxicity to host cells. MTT assay based IC50 (>200 µg mL(-1)) of these extracts against HeLa cell line also indicates their high selectivity against the malaria parasite. DISCUSSION AND CONCLUSION: These exploratory studies suggest the possibilities of development of new antimalarial compounds from marine cyanobacteria.


Subject(s)
Antimalarials/pharmacology , Cyanobacteria/isolation & purification , Plasmodium falciparum/drug effects , Antimalarials/isolation & purification , Base Sequence , Cyanobacteria/genetics , Erythrocytes/drug effects , Erythrocytes/physiology , HeLa Cells , Humans , India , Molecular Sequence Data , Plasmodium falciparum/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...