Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomed Opt ; 27(7)2022 06.
Article in English | MEDLINE | ID: mdl-35701869

ABSTRACT

SIGNIFICANCE: Multi-laboratory initiatives are essential in performance assessment and standardization-crucial for bringing biophotonics to mature clinical use-to establish protocols and develop reference tissue phantoms that all will allow universal instrument comparison. AIM: The largest multi-laboratory comparison of performance assessment in near-infrared diffuse optics is presented, involving 28 instruments and 12 institutions on a total of eight experiments based on three consolidated protocols (BIP, MEDPHOT, and NEUROPT) as implemented on three kits of tissue phantoms. A total of 20 synthetic indicators were extracted from the dataset, some of them defined here anew. APPROACH: The exercise stems from the Innovative Training Network BitMap funded by the European Commission and expanded to include other European laboratories. A large variety of diffuse optics instruments were considered, based on different approaches (time domain/frequency domain/continuous wave), at various stages of maturity and designed for different applications (e.g., oximetry, spectroscopy, and imaging). RESULTS: This study highlights a substantial difference in hardware performances (e.g., nine decades in responsivity, four decades in dark count rate, and one decade in temporal resolution). Agreement in the estimates of homogeneous optical properties was within 12% of the median value for half of the systems, with a temporal stability of <5 % over 1 h, and day-to-day reproducibility of <3 % . Other tests encompassed linearity, crosstalk, uncertainty, and detection of optical inhomogeneities. CONCLUSIONS: This extensive multi-laboratory exercise provides a detailed assessment of near-infrared Diffuse optical instruments and can be used for reference grading. The dataset-available soon in an open data repository-can be evaluated in multiple ways, for instance, to compare different analysis tools or study the impact of hardware implementations.


Subject(s)
Laboratories , Optics and Photonics , Phantoms, Imaging , Reproducibility of Results , Spectrum Analysis
2.
Biomed Opt Express ; 10(12): 6227-6241, 2019 Dec 01.
Article in English | MEDLINE | ID: mdl-31853396

ABSTRACT

The forward model in diffuse optical tomography (DOT) describes how light propagates through a turbid medium. It is often approximated by a diffusion equation (DE) that is numerically discretized by the classical finite element method (FEM). We propose a nonlocal diffusion equation (NDE) as a new forward model for DOT, the discretization of which is carried out with an efficient graph-based numerical method (GNM). To quantitatively evaluate the new forward model, we first conduct experiments on a homogeneous slab, where the numerical accuracy of both NDE and DE is compared against the existing analytical solution. We further evaluate NDE by comparing its image reconstruction performance (inverse problem) to that of DE. Our experiments show that NDE is quantitatively comparable to DE and is up to 64% faster due to the efficient graph-based representation that can be implemented identically for geometries in different dimensions. The proposed discretization method can be easily applied to other imaging techniques like diffuse correlation spectroscopy which are normally modeled by the diffusion equation.

SELECTION OF CITATIONS
SEARCH DETAIL
...