Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 106
Filter
1.
Dent J (Basel) ; 12(4)2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38668007

ABSTRACT

The dental pulp chamber volume is a fundamental measurement in the field of endodontics, but also in forensic sciences, teaching and training, or tissue engineering. This study evaluates the precision of cone-beam computed tomography (CBCT) in comparison with computed micro-tomography (micro-CT) in evaluating the pulp chamber volume of the upper central incisors ex vivo. The intra-operator and inter-operator errors were evaluated, and the results for the two techniques were compared with those of a T-test for paired samples. The intra-operator and inter-operator errors were >0.05, indicating adequate reproducibility in each operator and no significant differences between their measurements. On the other hand, no significant differences between the two measurement techniques were found. The present results demonstrate that CBCT is a precise, feasible, and reproducible technique for the evaluation of the dental pulp chamber volume ex vivo. The results provided with this method are useful for different medical domains but also for the teaching and training of undergraduate and postgraduate students. Furthermore, the findings of this study carry significant clinical implications, as the accurate assessment of the pulp chamber volume is critical in the diagnosis and treatment of various endodontic conditions. The ability of CBCT to provide reliable 3D dental anatomy measurements can enhance the planning of endodontic treatments by allowing for a better understanding of the internal tooth morphology. Additionally, the precision and reproducibility of CBCT in assessing the pulp chamber volume can contribute to improved clinical outcomes and reduced complications during endodontic procedures. These findings further support the increasingly vital role of CBCT in modern clinical practice and underscore its value as an indispensable tool in the field of dentistry.

2.
Int J Mol Sci ; 25(4)2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38396702

ABSTRACT

Interaction between extracellular matrix (ECM) components plays an important role in the regulation of cellular behavior and hence in tissue function. Consequently, characterization of new interactions within ECM opens the possibility of studying not only the functional but also the pathological consequences derived from those interactions. We have previously described the interaction between fibulin2 and ADAMTS-12 in vitro and the effects of that interaction using cellular models of cancer. Now, we generate a mouse deficient in both ECM components and evaluate functional consequences of their absence using different cancer and inflammation murine models. The main findings indicate that mice deficient in both fibulin2 and ADAMTS12 markedly increase the development of lung tumors following intraperitoneal urethane injections. Moreover, inflammatory phenotype is exacerbated in the lung after LPS treatment as can be inferred from the accumulation of active immune cells in lung parenchyma. Overall, our results suggest that protective effects in cancer or inflammation shown by fibulin2 and ADAMTS12 as interactive partners in vitro are also shown in a more realistic in vivo context.


Subject(s)
Calcium-Binding Proteins , Extracellular Matrix Proteins , Inflammation , Neoplasms , Pneumonia , Animals , Mice , Inflammation/genetics , Lung , Phenotype , ADAMTS Proteins/genetics , ADAMTS Proteins/metabolism
3.
Nat Ecol Evol ; 8(3): 400-410, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38200369

ABSTRACT

Mycorrhizae, a form of plant-fungal symbioses, mediate vegetation impacts on ecosystem functioning. Climatic effects on decomposition and soil quality are suggested to drive mycorrhizal distributions, with arbuscular mycorrhizal plants prevailing in low-latitude/high-soil-quality areas and ectomycorrhizal (EcM) plants in high-latitude/low-soil-quality areas. However, these generalizations, based on coarse-resolution data, obscure finer-scale variations and result in high uncertainties in the predicted distributions of mycorrhizal types and their drivers. Using data from 31 lowland tropical forests, both at a coarse scale (mean-plot-level data) and fine scale (20 × 20 metres from a subset of 16 sites), we demonstrate that the distribution and abundance of EcM-associated trees are independent of soil quality. Resource exchange differences among mycorrhizal partners, stemming from diverse evolutionary origins of mycorrhizal fungi, may decouple soil fertility from the advantage provided by mycorrhizal associations. Additionally, distinct historical biogeographies and diversification patterns have led to differences in forest composition and nutrient-acquisition strategies across three major tropical regions. Notably, Africa and Asia's lowland tropical forests have abundant EcM trees, whereas they are relatively scarce in lowland neotropical forests. A greater understanding of the functional biology of mycorrhizal symbiosis is required, especially in the lowland tropics, to overcome biases from assuming similarity to temperate and boreal regions.


Subject(s)
Mycorrhizae , Trees , Ecosystem , Soil , Nutrients
4.
Anat Rec (Hoboken) ; 307(5): 1960-1968, 2024 May.
Article in English | MEDLINE | ID: mdl-37975162

ABSTRACT

PIEZO1 and PIEZO2 are essential components of mechanogated ion channels, which are required for mechanotransduction and biological processes associated with mechanical stimuli. There is evidence for the presence of PIEZO1 and PIEZO2 in teeth and periodontal ligaments, especially in cell lines and mice, but human studies are almost nonexistent. Decalcified permanent human teeth and mouse molars were processed for immunohistochemical detection of PIEZO1 and PIEZO2. Confocal laser microscopy was used to examine the co-localization of PIEZO 1 and PIEZO2 with vimentin (a marker of differentiated odontoblasts) in human teeth. In the outer layer of the human dental pulp, abundant PIEZO1- and PIEZO2-positive cells were found that had no odontoblast morphology and were vimentin-negative. Based on their morphology, location, and the absence of vimentin positivity, they were identified as dental pulp stem cells or pre-odontoblasts. However, in mice, PIEZO1 and PIEZO2 were ubiquitously detected and colocalized in odontoblasts. Intense immunoreactivity of PIEZO1 and PIEZO2 has been observed in human and murine periodontal ligaments. Our findings suggest that PIEZO1 and PIEZO2 may be mechanosensors/mechanotransducers in murine odontoblasts, as well as in the transmission of forces by the periodontal ligament in humans and mice.


Subject(s)
Mechanotransduction, Cellular , Periodontal Ligament , Humans , Mice , Animals , Periodontal Ligament/metabolism , Vimentin/metabolism , Dental Pulp , Ion Channels/metabolism
5.
Anat Rec (Hoboken) ; 307(3): 669-676, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37712912

ABSTRACT

The objective of this study was to analyze the proprioceptive innervation of human lips, especially of the orbicularis oris muscle, since it is classically accepted that facial muscles lack typical proprioceptors, that is, muscle spindles, but recently this has been doubted. Upper and lower human lips (n = 5) from non-embalmed frozen cadavers were immunostained for detection of S100 protein (to identify nerves and sensory nerve formations), myosin heavy chain (to label muscle fibers within muscle spindles), and the mechano-gated ion channel PIEZO2. No muscle spindles were found, but there was a high density of sensory nerve formations, which were morphologically heterogeneous, and in some cases resemble Ruffini-like and Pacinian sensory corpuscles. The axons of these sensory formations displayed immunoreactivity for PIEZO2. Human lip muscles lack typical proprioceptors but possess a dense sensory innervation which can serve the lip proprioception.


Subject(s)
Lip , Proprioception , Humans , Proprioception/physiology , Sensory Receptor Cells/physiology , Facial Muscles , Pacinian Corpuscles
6.
Ann Anat ; 252: 152200, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38109982

ABSTRACT

BACKGROUND: The cutaneous end organ complexes or cutaneous sensory corpuscles are specialized sensory organs associated to low-threshold mechanoreceptors. Mechano-gated proteins forming a part of ion channels have been detected in both the axon and terminal glial cells of Meissner corpuscles, a specific cutaneous end organ complex in the human glabrous skin. The main candidates to mechanotransduction in Meissner corpuscles are members of the Piezo family of cationic ion channels. PIEZO2 has been detected in the axon of these sensory structures whereas no data exists about the occurrence and cell localization of PIEZO1. METHODS: Skin samples (n = 18) from the palmar aspect of the distal phalanx of the first and second fingers were analysed (8 female and 10 males; age range 26 to 61 26-61 years). Double immunofluorescence for PIEZO1 and PIEZO2 together with axonal or terminal glial cell markers was captured by laser confocal microscopy, and the percentage of PIEZOs positive Meissner corpuscles was evaluated. RESULTS: MCs from human fingers showed variable morphology and degree of lobulation. Regarding the basic immunohistochemical profile, in all cases the axons were immunoreactive for neurofilament proteins, neuron specific enolase and synaptophysin, while the lamellar cells displayed strong S100P immunoreactivity. PIEZO1 was detected co-localizing with axonal markers, but never with terminal glial cell markers, in the 56% of Meissner corpuscles; weak but specific immunofluorescence was additionally detected in the epidermis, especially in basal keratinocytes. Similarly, PIEZO2 immunoreactivity was found restricted to the axon in the 85% of Meissner corpuscles. PIEZO2 positive Merkel cells were also regularly found. CONCLUSIONS: PIEZO1 and PIEZO2 are expressed exclusively in the axon of a subpopulation of human digital Meissner corpuscles, thus suggesting that not only PIEZO2, but also PIEZO1 may be involved in the mechanotransduction from low-threshold mechanoreceptors.


Subject(s)
Mechanotransduction, Cellular , Pacinian Corpuscles , Female , Humans , Male , Ion Channels/metabolism , Mechanoreceptors , Merkel Cells , Pacinian Corpuscles/chemistry , Skin/metabolism , Adult , Middle Aged
7.
J Environ Manage ; 351: 119831, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38134501

ABSTRACT

Geospatial fire behaviour and fire hazard simulators, fire effects models and smoke emission software commonly use standard fuel models in order to simplify data collection and the inclusion of complex fuel scenarios. These fuel models are often mapped using remotely sensed data. However, given the great complexity of fuelbeds, with properties that vary widely in both time and space, the use of these standard fuel models can greatly limit accurate fuel mapping. This affects fuel hazard assessment, fuel reduction treatment plans, fire management decision-making and evaluation of the environmental impact of wildfire. In this study, we developed unique customized fire behaviour fuel models for shrub and bracken communities, by using k-medoids clustering analysis based on both fuel structural characteristics and potential fire behaviour. We used an original database of 722 destructive sample plots in nine different shrub and bracken communities covering the entire distribution area in Galicia (NW Spain), one of the regions in Europe most affected by forest fires. Measurements of cover, height and fuel fractions loads differentiated by size and vegetative state (live or dead) were used to estimate the potential rate of fire spread with five different models including fireline intensity, heat per unit area and the flame length for each sampling site and considering extreme environmental conditions. The optimal number of clusters was established by combining practical knowledge about the shrubland communities under study and their associated fire behaviour, with maximization of the mean value of the silhouette variable and minimization of the within-cluster sum of squares. The structural characteristics of the medoids derived from the analysis were associated with each of the proposed customized fuel models. Finally, a simple dichotomous classification based only on shrub height was developed to enable construction of spatially explicit fuel model maps based on remotely sensed data. Thus, the methodology applied allows generation of a more realistic representation of fuel distribution in the landscape, based on fuel structure measurements of natural regional ecosystems rather than on the use of standard models. We believe that the proposed methodology is generally applicable to communities composed of other shrub and fern species in different biogeographical regions.


Subject(s)
Fires , Wildfires , Ecosystem , Spain , Europe
8.
Ann Anat ; 252: 152206, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38154784

ABSTRACT

BACKGROUND: Afferent innervation of shoulder joints plays a fundamental role in nociception and mechanoception and its alteration result in shoulder´s disease that course with pain and functional disability. METHODS: Joints shoulder from healthy subjects (n = 20) and with chronic pain shoulder syndromes (n = 17) were analyzed using immunohistochemistry for S100 protein to identify nerve structures (nerve fibers and sensory corpuscles), coupled with a quantification of the sensory formations. Sensory nerve formations were quantified in 13 distinct areas in healthy joint shoulder and in the available equivalent areas in the pathological joints. Statistical analyses were conducted to assess differences between healthy shoulder and pathological shoulder joint (p< 0.05). RESULTS: All analyzed structures, i.e., glenohumeral capsule, acromioclavicular capsule, the extraarticular structures (subcoracoid region and subacromio-subdeltoid bursa) and intraarticular structures (biceps brachii tendon and labrum articulare) are variably innervated except the extrinsic coracoacromial ligament, which was aneural. The afferent innervation of healthy human shoulder joints consists of free nerve endings, simple lamellar corpuscles and Ruffini's corpuscles. Occasionally, Golgi-Mazzoni's and Pacinian corpuscles were found. However, the relative density of each one varied among joints and/or the different zones within the same joint. As a rule, the upper half and anterior half of healthy glenohumeral capsules have a higher innervation compared to the lower and posterior respectably. On the other hand, in joints from subjects suffering chronic shoulder pain, a reduced innervation was found, involving more the corpuscles than free nerve endings. CONCLUSIONS: Our findings report a global innervation map of the human shoulder joints, especially the glenohumeral one, and this knowledge might be of interest for arthroscopic surgeons allowing to develop more selective and unhurt treatments, controlling the pain, and avoiding the loss of afferent innervation after surgical procedures. To the light of our results the postero-inferior glenohumeral capsular region seems to be the more adequate to be a surgical portal (surgical access area) to prevent nerve lesions.


Subject(s)
Chronic Pain , Shoulder Joint , Humans , Shoulder Joint/innervation , Shoulder , Mechanoreceptors , Sensory Receptor Cells
9.
Int J Mol Sci ; 24(24)2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38138991

ABSTRACT

The carotid body is a major peripheral chemoreceptor that senses changes in arterial blood oxygen, carbon dioxide, and pH, which is important for the regulation of breathing and cardiovascular function. The mechanisms by which the carotid body senses O2 and CO2 are well known; conversely, the mechanisms by which it senses pH variations are almost unknown. Here, we used immunohistochemistry to investigate how the human carotid body contributes to the detection of acidosis, analyzing whether it expresses acid-sensing ion channels (ASICs) and determining whether these channels are in the chemosensory glomic cells or in the afferent nerves. In ASIC1, ASIC2, and ASIC3, and to a much lesser extent ASIC4, immunoreactivity was detected in subpopulations of type I glomus cells, as well as in the nerves of the carotid body. In addition, immunoreactivity was found for all ASIC subunits in the neurons of the petrosal and superior cervical sympathetic ganglia, where afferent and efferent neurons are located, respectively, innervating the carotid body. This study reports for the first time the occurrence of ASIC proteins in the human carotid body, demonstrating that they are present in glomus chemosensory cells (ASIC1 < ASIC2 > ASIC3 > ASIC4) and nerves, presumably in both the afferent and efferent neurons supplying the organ. These results suggest that the detection of acidosis by the carotid body can be mediated via the ASIC ion channels present in the type I glomus cells or directly via sensory nerve fibers.


Subject(s)
Acidosis , Carotid Body , Humans , Acid Sensing Ion Channels/metabolism , Carotid Body/metabolism , Chemoreceptor Cells/metabolism , Peripheral Nervous System/metabolism , Acidosis/metabolism
10.
Ann Anat ; 250: 152159, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37741584

ABSTRACT

BACKGROUND: The lips are a vital component of the face and are densely innervated to perform various functions. The lip edges are covered with mucocutaneous tissue called vermilion which is particularly receptive to touch and temperature. The aim of this study was to investigate the somatosensory innervation of human lips, focusing on sensory corpuscles and the presence of mechano-gated (ASIC2, PIEZO2, and TRPV4) and thermosensing (TRPV1, TRPM2, and RPM8) ion channels within them. METHODS: Twelve intact lips (6 upper and 6 lower) were obtained from non-embalmed frozen cadavers (five females and seven males) with an age range of 60-80 years. The specimens were divided into three zones (medial, lateral, and median). The morphotypes of sensory corpuscles and their immunohistochemical profile was analysed. The occurrence of ion channels involved in mechanosensation and temperature detection was examined using various antibodies. Sensory corpuscle density was quantified in vermilion sections, and statistical analyses were conducted to assess differences between the upper and lower lips, as well as between females and males (p < 0.05). RESULTS: Different morphotypes of sensory corpuscles were identified: Ruffini-like associated with hair follicles, Meissner and glomerular corpuscles in the vermilion, and less classifiable sensory corpuscles within the mucosa. The density of sensory corpuscles in the vermilion was higher in the upper lip than in the lower lip; glomerular corpuscles predominated in the medial and median segments, whereas Meissner corpuscles were more abundant in the lateral segment. No sex-related differences were observed in the density or distribution of the two main corpuscular morphotypes. In contrast, the axons of both the glomeruli and Meissner corpuscles regularly displayed ASIC2 and PIEZO2 immunoreactivity, whereas immunoreactivity for TRPV1, TRPV4, TRPM2, and TRPV8 was absent. CONCLUSIONS: These results demonstrate that the sensory corpuscles of the vermilion are a mixture of those typical of glabrous skin mucocutaneous tissues. The presence of PIEZO2 and ASIC2 in their axons suggests that these sensory corpuscles function as mechanosensors.


Subject(s)
Lip , TRPM Cation Channels , Male , Female , Humans , Middle Aged , Aged , Aged, 80 and over , TRPV Cation Channels , Mechanoreceptors , Skin/innervation
12.
Sci Rep ; 13(1): 11137, 2023 07 10.
Article in English | MEDLINE | ID: mdl-37429940

ABSTRACT

Coronary artery tortuosity is usually an undetected condition in patients undergoing coronary angiography. This condition requires a longer examination by the specialist to be detected. Yet, detailed knowledge of the morphology of coronary arteries is essential for planning any interventional treatment, such as stenting. We aimed to analyze coronary artery tortuosity in coronary angiography with artificial intelligence techniques to develop an algorithm capable of automatically detecting this condition in patients. This work uses deep learning techniques, in particular, convolutional neural networks, to classify patients into tortuous or non-tortuous based on their coronary angiography. The developed model was trained both on left (Spider) and right (45°/0°) coronary angiographies following a fivefold cross-validation procedure. A total of 658 coronary angiographies were included. Experimental results demonstrated satisfactory performance of our image-based tortuosity detection system, with a test accuracy of (87 ± 6)%. The deep learning model had a mean area under the curve of 0.96 ± 0.03 over the test sets. The sensitivity, specificity, positive predictive values, and negative predictive values of the model for detecting coronary artery tortuosity were (87 ± 10)%, (88 ± 10)%, (89 ± 8)%, and (88 ± 9)%, respectively. Deep learning convolutional neural networks were found to have comparable sensitivity and specificity with independent experts' radiological visual examination for detecting coronary artery tortuosity for a conservative threshold of 0.5. These findings have promising applications in the field of cardiology and medical imaging.


Subject(s)
Coronary Vessels , Deep Learning , Coronary Angiography , Coronary Vessels/diagnostic imaging , Artificial Intelligence , Research Design
13.
Cont Lens Anterior Eye ; 46(5): 101887, 2023 10.
Article in English | MEDLINE | ID: mdl-37460374

ABSTRACT

PURPOSE: To determine clinical performance and the 'Willingness To Pay' for toric vs. spherical soft contact lenses in an astigmatic population. METHODS: In the clinical study, subjects with binocular low to moderate astigmatism (-0.75DC to -1.50DC) wore pairs of soft toric (Biofinity toric) and spherical (Biofinity) contact lenses in random sequence. Visual acuity (high and low contrast, monocular and binocular), subjective comfort and subjective vision were recorded. In the economics study, first subjects who had participated in the clinical study were presented with a series of randomised economic scenarios in order to determine their Willingness To Pay a premium (i.e. an increase) for toric lenses. Then, a similar set of scenarios were presented to a much larger group of online respondents and again, Willingness To Pay was established. RESULTS: For the four measures of visual acuity, the Biofinity toric lens out-performed the Biofinity spherical lens by 0.6 to 1.1 lines.. Subjective vision performance was statistically significantly better with the toric lens for the distance task only. Comfort scores were not significantly different. Similar findings for Willingness To Pay were established for the clinical subjects and for the online respondents. The Willingness To Pay premium (additional fee) for a monthly supply of toric lenses (over spherical lenses) was between £13 and £16, if a toric lens provides better vision and similar comfort, as shown in the clinical study. CONCLUSION: Consumers are willing to pay a monthly premium of around 50% to benefit from the typical experience of better vision and similar comfort for toric vs. spherical lenses. The level of additional cost for toric lenses compared to their spherical equivalents is less than this in the market, so eye care professionals should consider that toric lenses are delivering a greater clinical return than anticipated by wearers for the relatively small increase in price.


Subject(s)
Astigmatism , Contact Lenses, Hydrophilic , Humans , Visual Acuity , Refraction, Ocular , Astigmatism/therapy
14.
J Neuroimaging ; 33(2): 218-226, 2023 03.
Article in English | MEDLINE | ID: mdl-36585957

ABSTRACT

BACKGROUND AND PURPOSE: Intracranial hemorrhage (ICH) is a common life-threatening condition that must be rapidly diagnosed and treated. However, there is still a lack of consensus regarding treatment, driven to some extent by prognostic uncertainty. While several prediction models for ICH detection have already been published, here we present a deep learning predictive model for ICH prognosis. METHODS: We included patients with ICH (n = 262), and we trained a custom model for the classification of patients into poor prognosis and good prognosis, using a hybrid input consisting of brain CT images and other clinical variables. We compared it with two other models, one trained with images only (I-model) and the other with tabular data only (D-model). RESULTS: Our hybrid model achieved an area under the receiver operating characteristic curve (AUC) of .924 (95% confidence interval [CI]: .831-.986), and an accuracy of .861 (95% CI: .760-.960). The I- and D-models achieved an AUC of .763 (95% CI: .622-.902) and .746 (95% CI: .598-.876), respectively. CONCLUSIONS: The proposed hybrid model was able to accurately classify patients into good and poor prognosis. To the best of our knowledge, this is the first ICH prognosis prediction deep learning model. We concluded that deep learning can be applied for prognosis prediction in ICH that could have a great impact on clinical decision-making. Further, hybrid inputs could be a promising technique for deep learning in medical imaging.


Subject(s)
Cerebral Hemorrhage , Deep Learning , Humans , Intracranial Hemorrhages , Prognosis , ROC Curve
15.
Philos Trans R Soc Lond B Biol Sci ; 378(1867): 20210086, 2023 01 02.
Article in English | MEDLINE | ID: mdl-36373924

ABSTRACT

Mining contributes importantly to tropical deforestation and land degradation. To mitigate these effects, mining companies are increasingly obliged to restore abandoned mine lands, but factors driving restoration success are hardly evaluated. Here, we investigate the influence of ecological factors (restoration age, soil properties and surrounding forest area) and management factors (diversity and density of planted species, mine zone) on the recovery rate of forest structure and tree diversity on 40 post-mining restoration areas in Southern Amazonia, Brazil, using a 9-year annual monitoring dataset consisting of over 25 000 trees. We found that recovery of forest structure was closely associated with interactions between soil quality and the planted tree communities, and that tree diversity recovery was positively associated with the amount of surrounding forests. We also observed that forest structure and diversity recover more slowly in mine tailings compared to pit surroundings. Our study confirms the complexity of mine land restoration but also reveals that planting design and soil improvement can increase restoration success. For resource-efficient mine restoration, we recommend the focusing of efforts on tailings, which are hardest to restore, and reducing efforts in pit surroundings and areas close to surrounding forest because of their potential for restoration by natural regeneration. This article is part of the theme issue 'Understanding forest landscape restoration: reinforcing scientific foundations for the UN Decade on Ecosystem Restoration'.


Subject(s)
Ecosystem , Soil , Forests , Trees , Mining , Plants
16.
Diagnostics (Basel) ; 12(7)2022 Jul 13.
Article in English | MEDLINE | ID: mdl-35885610

ABSTRACT

BACKGROUND: Plantar fibromatosis, known as Ledderhose disease, is a neoplastic disease characterized by a locally-aggressive bland fibroblastic proliferation. Although Pacinian corpuscles alterations are commonly described in palmar fibromatosis, there are still no references about Pacinian corpuscles alterations in the rarer plantar version. METHODS: We present a case report where a wide cutaneous resection, including the plantar fascia was performed, allowing a detailed study of Pacinian corpuscles. Pacinian corpuscles were analyzed using immunohistochemistry for neurofilament proteins, S100 protein, CD34, vimentin, glucose transporter 1, epithelial membrane antigen, neural-cell adhesion molecule, actin, desmin, type IV collagen, and high-affinity neurotrophin Trk-receptors. Moreover, the density and the size of the corpuscles were determined. RESULTS: A clear increase in the number (hyperplasia) of Pacinian corpuscles was evidenced in the Ledderhose disease plantar fascia in comparison with similarly aged normal subjects. Pacinian hypertrophy was not demonstrated, but a significant decrease in the number of corpuscular lamellae was noted, with a subsequent increase in the interlamellar spaces. Pacinian corpuscles from the pathological plantar fascia showed an abnormal structure and immunohistochemical profile, generally without identifiable axons, and also absence of an inner core or an intermediate layer. Moreover, other molecules related with trophic maintenance of corpuscles were also absent. Finally, a vascular proliferation was commonly noted in some corpuscles, which involved all corpuscular constituents. CONCLUSION: The observed Pacinian corpuscles hyperplasia could be considered a diagnostic clue of plantar fibromatosis.

17.
Int J Mol Sci ; 23(9)2022 Apr 23.
Article in English | MEDLINE | ID: mdl-35563087

ABSTRACT

Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin family and it is involved in several fundamental functions in the central and peripheral nervous systems, and in sensory organs. BDNF regulates the chemosensory systems of mammals and is consistently expressed in those organs. In zebrafish, the key role of BDNF in the biology of the hair cells of the inner ear and lateral line system has recently been demonstrated. However, only some information is available about its occurrence in the olfactory epithelium, taste buds, and cutaneous isolated chemosensory cells. Therefore, this study was undertaken to analyze the involvement of BDNF in the chemosensory organs of zebrafish during the larval and adult stages. To identify cells displaying BDNF, we compared the cellular pattern of BDNF-displaying cells with those immunoreactive for calretinin and S100 protein. Our results demonstrate the localization of BDNF in the sensory part of the olfactory epithelium, mainly in the ciliated olfactory sensory neurons in larvae and adult zebrafish. Intense immunoreaction for BDNF was also observed in the chemosensory cells of oral and cutaneous taste buds. Moreover, a subpopulation of olfactory sensory neurons and chemosensory cells of olfactory rosette and taste bud, respectively, showed marked immunopositivity for calcium-binding protein S100 and calretinin. These results demonstrate the possible role of BDNF in the development and maintenance of olfactory sensory neurons and sensory cells in the olfactory epithelium and taste organs of zebrafish during all stages of development.


Subject(s)
Taste Buds , Animals , Brain-Derived Neurotrophic Factor/metabolism , Calbindin 2/metabolism , Larva/metabolism , Mammals/metabolism , Olfactory Mucosa/metabolism , S100 Proteins/metabolism , Taste Buds/metabolism , Zebrafish/metabolism
18.
Ann Anat ; 243: 151953, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35523396

ABSTRACT

BACKGROUND: PIEZO2 is a transmembrane protein forming part of an ion channel required for mechanotransduction. In humans, PIEZO2 is present in axon terminals of adult Meissner and Pacinian corpuscles, as well as Merkel cells in Merkel cell-neurite complexes. METHODS: To study the acquisition of functional capability for mechanotransduction of developing type I slowly adapting low-threshold mechanoreceptors, i.e., Merkel cell-neurite complexes, a battery of immunohistochemical and immunofluorescence techniques was performed on human skin specimens covering the whole development and growth, from 11 weeks of estimated gestational age to 20 years of life. In addition, developmental expression of PIEZO2 type I (Meissner's corpuscles) and type II (Pacinian corpuscles) rapidly adapting mechanoreceptors was studied in parallel. RESULTS: The first evidence of Merkel cells showing the typical morphology and placement was at 13 weeks of estimated gestation age, and at this time positive immunoreactivity for PIEZO2 was achieved. PIEZO2 expression in axons terminals started at 23 WEGA in Pacinian corpuscles and at 36 WEGA in the case of Meissner corpuscles. The occurrence of PIEZO2 in Merkel cells, Meissner and Pacinian corpuscles was maintained for all the time investigated. Interestingly PIEZO2 was absent in most Aß type I slowly adapting low-threshold mechanoreceptors that innervate MC while it was regularly present in most Aß type I and type II rapidly adapting low-threshold mechanoreceptors that supplies Meissner and Pacinian corpuscles. CONCLUSION: The present results provide evidence that human cutaneous mechanoreceptors could perform mechanotransduction already during embryonic development.


Subject(s)
Mechanotransduction, Cellular , Merkel Cells , Adult , Female , Humans , Ion Channels/metabolism , Mechanoreceptors/physiology , Mechanotransduction, Cellular/physiology , Pacinian Corpuscles/chemistry , Pregnancy , Skin/metabolism
19.
New Phytol ; 235(2): 457-471, 2022 07.
Article in English | MEDLINE | ID: mdl-35388492

ABSTRACT

Among tropical forests, lianas are predicted to have a growth advantage over trees during seasonal drought, with substantial implications for tree and forest dynamics. We tested the hypotheses that lianas maintain higher water status than trees during seasonal drought and that lianas maximize leaf cover to match high, dry-season light conditions, while trees are more limited by moisture availability during the dry season. We monitored the seasonal dynamics of predawn and midday leaf water potentials and leaf phenology for branches of 16 liana and 16 tree species in the canopies of two lowland tropical forests with contrasting rainfall regimes in Panama. In a wet, weakly seasonal forest, lianas maintained higher water balance than trees and maximized their leaf cover during dry-season conditions, when light availability was high, while trees experienced drought stress. In a drier, strongly seasonal forest, lianas and trees displayed similar dry season reductions in leaf cover following strong decreases in soil water availability. Greater soil moisture availability and a higher capacity to maintain water status allow lianas to maintain the turgor potentials that are critical for plant growth in a wet and weakly seasonal forest but not in a dry and strongly seasonal forest.


Subject(s)
Trees , Tropical Climate , Forests , Plant Leaves , Seasons , Soil , Water
20.
Ecol Lett ; 25(6): 1432-1441, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35415947

ABSTRACT

The well-established pattern of forest thinning during succession predicts an increase in mean tree biomass with decreasing tree density. The forest thinning pattern is commonly assumed to be driven solely by tree-tree competition. The presence of non-tree competitors could alter thinning trajectories, thus altering the rate of forest succession and carbon uptake. We used a large-scale liana removal experiment over 7 years in a 60- to 70-year-old Panamanian forest to test the hypothesis that lianas reduce the rate of forest thinning during succession. We found that lianas slowed forest thinning by reducing tree growth, not by altering tree recruitment or mortality. Without lianas, trees grew and presumably competed more, ultimately reducing tree density while increasing mean tree biomass. Our findings challenge the assumption that forest thinning is driven solely by tree-tree interactions; instead, they demonstrate that competition from other growth forms, such as lianas, slow forest thinning and ultimately delay forest succession.


Subject(s)
Forests , Tropical Climate , Biomass , Trees
SELECTION OF CITATIONS
SEARCH DETAIL
...