Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Integr Zool ; 17(4): 619-637, 2022 Jul.
Article in English | MEDLINE | ID: mdl-34496145

ABSTRACT

Physiological performance in lizards may be affected by climate across latitudinal or altitudinal gradients. In the coastal dune barriers in central-eastern Argentina, the annual maximum environmental temperature decreases up to 2°C from low to high latitudes, while the mean relative humidity of the air decreases from 50% to 25%. Liolaemus multimaculatus, a lizard in the family Liolaemidae, is restricted to these coastal dunes. We investigated the locomotor performance of the species at 6 different sites distributed throughout its range in these dune barriers. We inquired whether locomotor performance metrics were sensitive to the thermal regime attributable to latitude. The thermal performance breadth increased from 7% to 82% with latitude, due to a decrease in its critical thermal minimum of up to 5°C at higher latitudes. Lizards from high latitude sites showed a thermal optimum, that is, the body temperature at which maximum speed is achieved, up to 4°C lower than that of lizards from the low latitude. At relatively low temperatures, the maximum running speed of high-latitude individuals was faster than that of low-latitude ones. Thermal parameters of locomotor performance were labile, decreasing as a function of latitude. These results show populations of L. multimaculatus adjust thermal physiology to cope with local climatic variations. This suggests that thermal sensitivity responds to the magnitude of latitudinal fluctuations in environmental temperature.


Subject(s)
Lizards , Running , Animals , Body Temperature Regulation/physiology , Cold Temperature , Lizards/physiology , Running/physiology , Temperature
2.
J Therm Biol ; 88: 102485, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32125975

ABSTRACT

Thermoregulation in ectotherms may be modulated by climatic variability across geographic gradients. Environmental temperature varies along latitudinal clines resulting in heterogeneous thermal resource availability, which generally induces ectotherms to use compensatory mechanisms to thermoregulate. Lizards can accommodate to ambient temperature changes through a combination of adaptive evolution and behavioral and physiological plasticity. We studied the thermal ecology of the endangered endemic lizard Liolaemus multimaculatus at six different sites distributed from the northern to southern areas of the distribution (700 km) in the Atlantic dune barriers of Argentina, and even including the borders areas of the distribution range. Environmental temperatures and relative humidity showed a strong contrast between northern and southern limits of the distribution range. The northern localities had operative temperatures (Te) above the range of preferred temperatures (Tset), instead, the southern localities had large proportion of Tes within the Tset. Although these different climatic conditions may constrain the thermal biology of L. multimaculatus, individuals from all localities maintained relatively similar field body temperatures (XTb = 34.07 ± 3.02 °C), suggesting that this parameter is conservative. Thermal preference partially reflected latitudinal temperature gradient, since lizards from the two southernmost localities showed the lowest Tsel and Tset. Thermoregulatory efficiency differed among localities, since E values in the northern localities (E = 0.53-0.69) showed less variability than those of southern localities (E = 0.14-0.67). Although L. multimaculatus employed a strategy of having a conservative Tb and being able to acclimatize the thermal preference to copes with latitudinal changes in the thermal environment, other local factors, such as ecological interactions, may also impose limitations to thermoregulation and this may interfered in the interpretation of results at wider spatial scale.


Subject(s)
Body Temperature Regulation , Lizards/physiology , Microclimate , Animals , Argentina , Geography , Humidity , Temperature , Wind
3.
J Comp Physiol B ; 181(3): 373-82, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21063713

ABSTRACT

Liolaemini lizards occur in southern South America in a variety of dietary habits across a broad latitudinal and altitudinal distribution. We studied standard metabolic rates of 19 Liolaemini species and analyzed these data using both conventional and phylogenetically informed statistics. Oxygen consumption showed a significant and positive relationship with body mass (SMR = 0.109 × body mass(0.876±0.023)), with a higher slope than that expected on the basis of the three-quarter power law model. After phylogenetically informed and conventional analyses, no significant differences in metabolic rates were found to be related to diet or elevation. We hypothesize that small body size, ecological conservatism and physiological compensation may explain the lack of differences in metabolic rates observed among these lizards.


Subject(s)
Ecology , Energy Metabolism/physiology , Lizards/metabolism , Altitude , Animals , Basal Metabolism , Body Size , Body Weight/physiology , Diet , Female , Male , Oxygen Consumption/physiology , South America
4.
Vaccine ; 25(3): 519-25, 2007 Jan 05.
Article in English | MEDLINE | ID: mdl-17049686

ABSTRACT

Twenty four Hereford heifers free of anaplasmosis were allotted into three groups of eight animals each and inoculated three times with adjuvant in Puck saline as control or 50 microg and 100 microg of total protein of Anaplasma marginale initial bodies from three Mexican strains which share the same variable region of msp1alpha and msp4. Inoculation with the adjuvant or the immunogen at either of the two protein doses did not induce any undesirable changes attributable to inoculation in vaccinates or controls. On day 78 post vaccination animals were released in a ranch where bovine Anaplasmosis is endemic. The A. marginale strain prevalent in this ranch shares some of the msp1alpha tandem repeats with and the strains used in the vaccine. After release, all animals became infested with Boophilus microplus ticks and flies. During the challenge period, between days 279 and 300, loss of PCV due to clinical anaplasmosis in control animals was statistically higher from vaccinated animals. Likewise, controls mean peak rickettsemia was also significantly higher (p< or =0.01) than vaccinates' rickettsemias. The antibody responses of all vaccinates after the third vaccination reached OD values above 2.0 on day 49 and were different from controls (p<0.01). IgG(2) responses from both groups of vaccinates were different from controls (p<0.01). Vaccinates which required treatment, also showed the lowest IgG(2) and substantial IgG(1) responses. After contact with the rickettsia, controls developed clinical disease and 7 out of 8 required treatment, while vaccinates in general showed no substantial changes in hematocrit or rickettsemia and only one animal in each group required treatment. Our present results show that vaccination with either 50 microg or 100 microg of protein from purified IB derived from three strains induced protection to resist the challenge with the a field strain that shares some of the tandem repeats of MSP1a.


Subject(s)
Anaplasma marginale/immunology , Anaplasmosis/prevention & control , Bacterial Outer Membrane Proteins/immunology , Bacterial Vaccines/immunology , Anaplasma marginale/genetics , Anaplasmosis/immunology , Anaplasmosis/microbiology , Animals , Antibodies, Bacterial/analysis , Antibodies, Bacterial/biosynthesis , Bacterial Outer Membrane Proteins/genetics , Bacterial Vaccines/genetics , Cattle , Enzyme-Linked Immunosorbent Assay , Female , Immunoglobulin G/analysis , Immunoglobulin G/biosynthesis , Ticks/microbiology , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL