Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Cell Physiol ; 65(4): 644-656, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38591346

ABSTRACT

The function of ascorbate peroxidase-related (APX-R) proteins, present in all green photosynthetic eukaryotes, remains unclear. This study focuses on APX-R from Chlamydomonas reinhardtii, namely, ascorbate peroxidase 2 (APX2). We showed that apx2 mutants exhibited a faster oxidation of the photosystem I primary electron donor, P700, upon sudden light increase and a slower re-reduction rate compared to the wild type, pointing to a limitation of plastocyanin. Spectroscopic, proteomic and immunoblot analyses confirmed that the phenotype was a result of lower levels of plastocyanin in the apx2 mutants. The redox state of P700 did not differ between wild type and apx2 mutants when the loss of function in plastocyanin was nutritionally complemented by growing apx2 mutants under copper deficiency. In this case, cytochrome c6 functionally replaces plastocyanin, confirming that lower levels of plastocyanin were the primary defect caused by the absence of APX2. Overall, the results presented here shed light on an unexpected regulation of plastocyanin level under copper-replete conditions, induced by APX2 in Chlamydomonas.


Subject(s)
Ascorbate Peroxidases , Chlamydomonas reinhardtii , Mutation , Plastocyanin , Plastocyanin/metabolism , Plastocyanin/genetics , Ascorbate Peroxidases/metabolism , Ascorbate Peroxidases/genetics , Chlamydomonas reinhardtii/metabolism , Chlamydomonas reinhardtii/genetics , Copper/metabolism , Oxidation-Reduction , Photosystem I Protein Complex/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Cytochromes c6/metabolism , Cytochromes c6/genetics , Proteomics/methods , Light
2.
Antioxidants (Basel) ; 12(11)2023 Oct 31.
Article in English | MEDLINE | ID: mdl-38001799

ABSTRACT

Recent phylogenetic studies have unveiled a novel class of ascorbate peroxidases called "ascorbate peroxidase-related" (APX-R). These enzymes, found in green photosynthetic eukaryotes, lack the amino acids necessary for ascorbate binding. This study focuses on the sole APX-R from Chlamydomonas reinhardtii referred to as ascorbate peroxidase 2 (APX2). We used immunoblotting to locate APX2 within the chloroplasts and in silico analysis to identify key structural motifs, such as the twin-arginine transport (TAT) motif for lumen translocation and the metal-binding MxxM motif. We also successfully expressed recombinant APX2 in Escherichia coli. Our in vitro results showed that the peroxidase activity of APX2 was detected with guaiacol but not with ascorbate as an electron donor. Furthermore, APX2 can bind both copper and heme, as evidenced by spectroscopic, and fluorescence experiments. These findings suggest a potential interaction between APX2 and plastocyanin, the primary copper-containing enzyme within the thylakoid lumen of the chloroplasts. Predictions from structural models and evidence from 1H-NMR experiments suggest a potential interaction between APX2 and plastocyanin, emphasizing the influence of APX2 on the copper-binding abilities of plastocyanin. In summary, our results propose a significant role for APX2 as a regulator in copper transfer to plastocyanin. This study sheds light on the unique properties of APX-R enzymes and their potential contributions to the complex processes of photosynthesis in green algae.

3.
New Phytol ; 232(4): 1603-1617, 2021 11.
Article in English | MEDLINE | ID: mdl-34392544

ABSTRACT

The coupling between mitochondrial respiration and photosynthesis plays an important role in the energetic physiology of green plants and some secondary-red photosynthetic eukaryotes (diatoms), allowing an efficient CO2 assimilation and optimal growth. Using the flagellate Euglena gracilis, we first tested if photosynthesis-respiration coupling occurs in this species harbouring secondary green plastids (i.e. originated from an endosymbiosis between a green alga and a phagotrophic euglenozoan). Second, we tested how the trophic state (mixotrophy and photoautotrophy) of the cell alters the mechanisms involved in the photosynthesis-respiration coupling. Energetic coupling between photosynthesis and respiration was determined by testing the effect of respiratory inhibitors on photosynthesis, and measuring the simultaneous variation of photosynthesis and respiration rates as a function of temperature (i.e. thermal response curves). The mechanism involved in the photosynthesis-respiration coupling was assessed by combining proteomics, biophysical and cytological analyses. Our work shows that there is photosynthesis-respiration coupling and membrane contacts between mitochondria and chloroplasts in E. gracilis. However, whereas in mixotrophy adjustment of the chloroplast ATP/NADPH ratio drives the interaction, in photoautotrophy the coupling is conditioned by CO2 limitation and photorespiration. This indicates that maintenance of photosynthesis-respiration coupling, through plastic metabolic responses, is key to E. gracilis functioning under changing environmental conditions.


Subject(s)
Euglena gracilis , Photosynthesis , Carbon Dioxide , Chloroplasts , Euglena gracilis/physiology , Plastids
4.
Sci Rep ; 10(1): 17514, 2020 10 15.
Article in English | MEDLINE | ID: mdl-33060749

ABSTRACT

The mutualistic relationship existing between scleractinian corals and their photosynthetic endosymbionts involves a complex integration of the metabolic pathways within the holobiont. Respiration and photosynthesis are the most important of these processes and although they have been extensively studied, our understanding of their interactions and regulatory mechanisms is still limited. In this work we performed chlorophyll-a fluorescence, oxygen exchange and time-resolved absorption spectroscopy measurements on small and thin fragments (0.3 cm2) of the coral Stylophora pistillata. We showed that the capacity of mitochondrial alternative oxidase accounted for ca. 25% of total coral respiration, and that the high-light dependent oxygen uptake, commonly present in isolated Symbiodiniaceae, was negligible. The ratio between photosystem I (PSI) and photosystem II (PSII) active centers as well as their respective electron transport rates, indicated that PSI cyclic electron flow occurred in high light in S. pistillata and in some branching and lamellar coral species freshly collected in the field. Altogether, these results show the potential of applying advanced biophysical and spectroscopic methods on small coral fragments to understand the complex mechanisms of coral photosynthesis and respiration and their responses to environmental changes.


Subject(s)
Anthozoa/physiology , Chlorophyll A/chemistry , Mitochondria/enzymology , Mitochondrial Proteins/chemistry , Oxidoreductases/chemistry , Plant Proteins/chemistry , Symbiosis , Animals , Electron Transport , Energy Metabolism , Fluorescence , Genotype , Light , Oxidation-Reduction , Oxygen/chemistry , Oxygen Consumption , Photosynthesis , Photosystem I Protein Complex , Photosystem II Protein Complex , Spectrophotometry
5.
FEMS Microbiol Ecol ; 95(10)2019 10 01.
Article in English | MEDLINE | ID: mdl-31504450

ABSTRACT

The sea anemone Entacmaea medusivora (Actiniaria, Anthozoa) commonly feeds on the golden jellyfish Mastigias papua (Rhizostomeae, Scyphozoa) which harbours an endosymbiotic dinoflagellate of the genus Cladocopium (Symbiodiniaceae). In this study, we monitored the photosynthetic activity of the endosymbiotic microalgae while their host jellyfish were ingested and digested by starved medusivorous anemones. By analyzing the photosynthetic yield of photosystem II, we observed that Cladocopium cells remain photosynthetically competent during the whole digestion process, thus confirming the exceptional resistance of Symbiodiniaceae to digestive enzymes. In the gastric cavity of E. medusivora, Cladocopium cells release oxygen, which could broadly stimulate the gastric microbiotic flora of the sea anemone. Ultimately, E. medusivora is not able to retain Cladocopium cells more than few days and physiologically-unaltered cells are therefore expelled in faecal pellets. The potential contribution of E. medusivora to maintain a reservoir of Cladocopium symbionts and its role in the life cycle of M. papua is discussed.


Subject(s)
Dinoflagellida/metabolism , Photosynthesis , Scyphozoa/physiology , Scyphozoa/parasitology , Sea Anemones/physiology , Animals , Digestion , Feeding Behavior , Symbiosis
SELECTION OF CITATIONS
SEARCH DETAIL