Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Cell Signal ; 72: 109636, 2020 08.
Article in English | MEDLINE | ID: mdl-32283254

ABSTRACT

The Wnt signaling pathway is a crucial regulator of the intestinal epithelium homeostasis and is altered in most colon cancers. While the role of aberrant canonical, ß-catenin-dependent Wnt signaling has been well established in colon cancer promotion, much less is known about the role played by noncanonical, ß-catenin-independent Wnt signaling in this type of cancer. This work aimed to characterize the noncanonical signal transduction pathway in colon cancer cells. To this end, we used the prototype noncanonical ligand, Wnt5a, in comparison with Wnt3a, the prototype of a canonical ß-catenin activating ligand. The analysis of the expression profile of Wnt receptors in colon cancer cell lines showed a clear increase in both level expression and variety of Frizzled receptor types expressed in colon cancer cells compared with non-malignant cells. We found that Wnt5a activates a typical Wnt/Ca++ - noncanonical signaling pathway in colon malignant cells, inducing the hyperphosphorylation of Dvl1, Dvl2 and Dvl3, promoting Ca++ mobilization as a result of phospholipase C (PLC) activation via pertussis toxin-sensitive G-protein, and inducing PLC-dependent cell migration. We also found that while the co-receptor Ror2 tyrosine kinase activity is not required for Ca++ mobilization-induced by Wnt5a, it is required for the inhibitory effects of Wnt5a on the ß-catenin-dependent transcriptional activity. Unexpectedly, we found that although the prototype canonical Wnt3a ligand was unique in stimulating the ß-catenin-dependent transcriptional activity, it also simultaneously activated PLC, promoted Ca++ mobilization, and induced Rho kinase and PLC-dependent cell migration. Our data indicate, therefore, that a Wnt ligand can activate at the same time the so-called Wnt canonical and noncanonical pathways inducing the formation of complex signaling networks to integrate both pathways in colon cancer cells.


Subject(s)
Colonic Neoplasms/metabolism , Wnt Proteins/metabolism , Wnt Signaling Pathway , Animals , Calcium/metabolism , Cell Line, Tumor , Cell Movement/drug effects , Colonic Neoplasms/pathology , GTP-Binding Proteins/metabolism , Humans , Ligands , Mice , Models, Biological , Pertussis Toxin/pharmacology , Phosphorylation/drug effects , Protein Isoforms/metabolism , Protein Stability/drug effects , Receptor Tyrosine Kinase-like Orphan Receptors/metabolism , Receptors, Wnt/metabolism , Time Factors , Transcription, Genetic/drug effects , Wnt Signaling Pathway/drug effects , beta Catenin/metabolism
2.
Cell Signal ; 35: 107-117, 2017 07.
Article in English | MEDLINE | ID: mdl-28366812

ABSTRACT

Dishevelled (Dvl) proteins are central mediators of both canonical and non-canonical Wnt signaling. It is well known that, upon Wnt stimulation, Dvl becomes phosphorylated. However, how Wnt-induced phosphorylation of Dvl is regulated and its consequences are poorly understood. Here we found that Dvl proteins are overexpressed in colon cancer cells. In addition, we found that Wnt3a treatment rapidly induces hyperphosphorylation and stabilization of Dvl2 and Dvl3. The latter can be blocked by inhibition of Protein Kinase C (PKC)α, PKCδ, and PKCζ isoforms. We also found that Wnt3a-induced phosphorylation of Dvl3 by PKCζ is required to avoid Dvl3 degradation via proteasome. This demonstrated, to our knowledge for the first time, that hyperphosphorylation of Dvl by PKCζ results in Dvl stabilization. This is clear contrast with the consequences reported to date of CK1δ/ε-mediated Dvl phosphorylation upon Wnt treatment. Mapping the interaction domain between PKCζ and Dvl3 indicated that, although the Dvl-DIX domain is required to stabilize PKCζ-phosphorylated Dvl, it is not the region phosphorylated by this kinase. Our data show that the Dvl-DEP domain, required for specific interaction with PKCζ, is the site phosphorylated by this kinase, and also probably the Dvl-C terminus. Our findings suggest a model of positive regulation of PKCζ-mediated Dvl signaling activity, to produce a strong and sustained response to Wnt3a treatment by stabilizing Dvl protein levels.


Subject(s)
Colonic Neoplasms/genetics , Dishevelled Proteins/genetics , Protein Kinase C/genetics , Wnt3A Protein/administration & dosage , Colonic Neoplasms/pathology , Gene Expression Regulation, Neoplastic/drug effects , HEK293 Cells , Humans , Phosphorylation/drug effects , Proteasome Endopeptidase Complex/genetics , Proteasome Endopeptidase Complex/metabolism , Protein Interaction Mapping , Protein Kinase C/metabolism , Protein Kinase C-alpha/genetics , Protein Kinase C-delta/genetics , Proteolysis/drug effects , Wnt Signaling Pathway/drug effects , Wnt3A Protein/genetics , Wnt3A Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL