Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters










Publication year range
1.
J Cachexia Sarcopenia Muscle ; 15(1): 124-137, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38062911

ABSTRACT

BACKGROUND: More than 650 million people are obese (BMI > 30) worldwide, which increases their risk for several metabolic diseases and cancer. While cachexia and obesity are at opposite ends of the weight spectrum, leading many to suggest a protective effect of obesity against cachexia, mechanistic support for obesity's benefit is lacking. Given that obesity and cachexia are both accompanied by metabolic dysregulation, we sought to investigate the impact of obesity on skeletal muscle mass loss and mitochondrial dysfunction in murine cancer cachexia. METHODS: Male C57BL/6 mice were given a purified high fat or standard diet for 16 weeks before being implanted with 106 Lewis lung carcinoma (LLC) cells. Mice were monitored for 25 days, and hindlimb muscles were collected for cachexia indices and mitochondrial assessment via western blotting, high-resolution respirometry and transmission electron microscopy (TEM). RESULTS: Obese LLC mice experienced significant tumour-free body weight loss similar to lean (-12.8% vs. -11.8%, P = 0.0001) but had reduced survival (33.3% vs. 6.67%, χ2  = 10.04, P = 0.0182). Obese LLC mice had reduced muscle weights (-24%, P < 0.0354) and mCSA (-16%, P = 0.0004) with similar activation of muscle p65 (P = 0.0337), and p38 (P = 0.0008). ADP-dependent coupled respiration was reduced in both Obese and Obese LLC muscle (-30%, P = 0.0072) consistent with reductions in volitional cage activity (-39%, P < 0.0001) and grip strength (-41%, P < 0.0001). TEM revealed stepwise reductions in intermyofibrillar and subsarcolemmal mitochondrial size with Obese (IMF: -37%, P = 0.0009; SS: -21%, P = 0.0101) and LLC (IMF: -40%, P = 0.0019; SS: -27%, P = 0.0383) mice. Obese LLC mice had increased pAMPK (T172; P = 0.0103) and reduced FIS1 (P = 0.0029) and DRP1 (P < 0.0001) mitochondrial fission proteins, which were each unchanged in Lean LLC. Further, mitochondrial TEM analysis revealed that Obese LLC mice had an accumulation of damaged and dysfunctional mitochondria (IMF: 357%, P = 0.0395; SS: 138%, P = 0.0174) in concert with an accumulation of p62 (P = 0.0328) suggesting impaired autophagy and clearance of damaged mitochondria. Moreover, we observed increases in electron lucent vacuoles only in Obese LLC muscle (IMF: 421%, P = 0.0260; SS: 392%, P = 0.0192), further supporting an accumulation of damaged materials that cannot be properly cleared in the obese cachectic muscle. CONCLUSIONS: Taken together, these results demonstrate that obesity is not protective against cachexia and suggest exacerbated impairments to mitochondrial function and quality control with a particular disruption in the removal of damaged mitochondria. Our findings highlight the need for consideration of the severity of obesity and pre-existing metabolic conditions when determining the impact of weight status on cancer-induced cachexia and functional mitochondrial deficits.


Subject(s)
Cachexia , Carcinoma, Lewis Lung , Humans , Male , Animals , Mice , Cachexia/pathology , Mice, Inbred C57BL , Mitochondria/metabolism , Muscular Atrophy/pathology , Carcinoma, Lewis Lung/complications , Carcinoma, Lewis Lung/pathology , Obesity/complications , Obesity/pathology , Muscle, Skeletal/pathology
2.
Endocrinology ; 165(1)2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37967240

ABSTRACT

Serum sex steroid levels fluctuate throughout the reproductive cycle. However, the degree to which sex steroid tissue content mimics circulating content is unknown. Understanding the flux and physiological quantity of tissue steroid content is imperative for targeted hormonal therapy development. Utilizing a gold-standard ultrasensitive liquid chromatography-mass spectrometry (LC/MS) method we determined sex steroid (17ß-estradiol [E2], testosterone, androstenedione, and progesterone) fluctuations in serum and in 15 tissues throughout the murine estrous cycle (proestrus, estrus, and diestrus I) and in ovariectomized (OVX) mice. We observed dynamic fluctuations in serum and tissue steroid content throughout the estrous cycle with proestrus generally presenting the highest content of E2, testosterone, and androstenedione, and lowest content of progesterone. In general, the trend in circulating steroid content between the stages of the estrous cycle was mimicked in tissue. However, the absolute amounts of steroid levels when normalized to tissue weight were found to be significantly different between the tissues with the serum steroid quantity often being significantly lower than the tissue quantity. Additionally, we found that OVX mice generally displayed a depletion of all steroids in the various tissues assessed, except in the adrenal glands which were determined to be the main site of peripheral E2 production after ovary removal. This investigation provides a comprehensive analysis of steroid content throughout the estrous cycle in a multitude of tissues and serum. We believe this information will help serve as the basis for the development of physiologically relevant, tissue-specific hormonal therapies.


Subject(s)
Androstenedione , Progesterone , Female , Mice , Animals , Gonadal Steroid Hormones , Estradiol , Estrous Cycle/physiology , Testosterone
3.
Front Immunol ; 14: 1253587, 2023.
Article in English | MEDLINE | ID: mdl-37701438

ABSTRACT

Cachexia, a complex wasting syndrome, significantly affects the quality of life and treatment options for cancer patients. Studies have reported a strong correlation between high platelet count and decreased survival in cachectic individuals. Therefore, this study aimed to investigate the immunopathogenesis of cancer cachexia using the ApcMin/+ mouse model of spontaneous colorectal cancer. The research focused on identifying cellular elements in the blood at different stages of cancer cachexia, assessing inflammatory markers and fibrogenic factors in the skeletal muscle, and studying the behavioral and metabolic phenotype of ApcMin/+ mice at the pre-cachectic and severely cachectic stages. Platelet measurements were also obtained from other animal models of cancer cachexia - Lewis Lung Carcinoma and Colon 26 adenocarcinoma. Our study revealed that platelet number is elevated prior to cachexia development in ApcMin/+ mice and can become activated during its progression. We also observed increased expression of TGFß2, TGFß3, and SMAD3 in the skeletal muscle of pre-cachectic ApcMin/+ mice. In severely cachectic mice, we observed an increase in Ly6g, CD206, and IL-10 mRNA. Meanwhile, IL-1ß gene expression was elevated in the pre-cachectic stage. Our behavioral and metabolic phenotyping results indicate that pre-cachectic ApcMin/+ mice exhibit decreased physical activity. Additionally, we found an increase in anemia at pre-cachectic and severely cachectic stages. These findings highlight the altered platelet status during early and late stages of cachexia and provide a basis for further investigation of platelets in the field of cancer cachexia.


Subject(s)
Blood Platelets , Colonic Neoplasms , Animals , Mice , Cachexia/etiology , Quality of Life , Disease Models, Animal
4.
Endocrinology ; 164(8)2023 06 26.
Article in English | MEDLINE | ID: mdl-37421340

ABSTRACT

AIMS: The role of skeletal muscle estrogen and its ability to mitigate the negative impact of a high-fat diet (HFD) on obesity-associated metabolic impairments is unknown. To address this, we developed a novel mouse model to determine the role of endogenous 17ß-estradiol (E2) production in males in skeletal muscle via inducible, skeletal muscle-specific aromatase overexpression (SkM-Arom↑). METHODS: Male SkM-Arom↑ mice and littermate controls were fed a HFD for 14 weeks prior to induction of SkM-Arom↑ for a period of 6.5 weeks. Glucose tolerance, insulin action, adipose tissue inflammation, and body composition were assessed. Indirect calorimetry and behavioral phenotyping experiments were performed using metabolic cages. Liquid chromatography mass spectrometry was used to determine circulating and tissue (skeletal muscle, hepatic, and adipose) E2 and testosterone concentrations. RESULTS: SkM-Arom↑ significantly increased E2 in skeletal muscle, circulation, the liver, and adipose tissue. SkM-Arom↑ ameliorated HFD-induced hyperglycemia, hyperinsulinemia, impaired glucose tolerance, adipose tissue inflammation, and reduced hepatic lipid accumulation while eliciting skeletal muscle hypertrophy. CONCLUSION: Enhanced skeletal muscle aromatase activity in male mice induces weight loss, improves metabolic and inflammatory outcomes and mitigates the negative effects of a HFD. Additionally, our data demonstrate for the first time skeletal muscle E2 has anabolic effects on the musculoskeletal system.


Subject(s)
Diet, High-Fat , Insulin Resistance , Male , Animals , Mice , Diet, High-Fat/adverse effects , Aromatase/genetics , Aromatase/metabolism , Insulin Resistance/physiology , Muscle, Skeletal/metabolism , Obesity/etiology , Obesity/metabolism , Inflammation/metabolism , Estrogens/metabolism , Mice, Inbred C57BL
5.
Nutrients ; 15(7)2023 Mar 23.
Article in English | MEDLINE | ID: mdl-37049400

ABSTRACT

(1) Background: Gastrointestinal pain and fatigue are the most reported concerns of patients with inflammatory bowel disease (IBD). Commonly prescribed drugs focus on decreasing excessive inflammation. However, up to 20% of IBD patients in an "inactive" state experience abdominal pain. The medicinal herb Ojeok-san (OJS) has shown promise in the amelioration of visceral pain. However, no research on OJS has been conducted in preclinical models of IBD. The mechanism by which OJS promotes analgesia is still elusive, and it is unclear if OJS possesses addictive properties. (2) Aims: In this study, we examined the potential of OJS to promote analgesic effects and rewarding behavior. Additionally, we investigated if tumor necrosis factor alpha (TNFα) from macrophages is a primary culprit of IBD-induced nociception. (3) Methods: Multiple animal models of IBD were used to determine if OJS can reduce visceral nociception. TNFα-macrophage deficient mice were used to investigate the mechanism of action by which OJS reduces nociceptive behavior. Mechanical sensitivity and operant conditioning tests were used to determine the analgesic and rewarding effects of OJS. Body weight, colon length/weight, blood in stool, colonic inflammation, and complete blood count were assessed to determine disease progression. (4) Results: OJS reduced the evoked mechanical nociception in the dextran sulphate sodium model of colitis and IL-10 knockout (KO) mice and delayed aversion to colorectal distension in C57BL/6 mice. No rewarding behavior was observed in OJS-treated IL-10 KO and mdr1a KO mice. The analgesic effects of OJS are independent of macrophage TNFα levels and IBD progression. (5) Conclusions: OJS ameliorated elicited mechanical and visceral nociception without producing rewarding effects. The analgesic effects of OJS are not mediated by macrophage TNFα.


Subject(s)
Colitis , Inflammatory Bowel Diseases , Mice , Animals , Interleukin-10 , Tumor Necrosis Factor-alpha/adverse effects , Mice, Inbred C57BL , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/pathology , Colitis/chemically induced , Mice, Knockout , Inflammation , Pain , Disease Models, Animal , Dextran Sulfate/adverse effects
6.
Physiol Behav ; 258: 114029, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36372225

ABSTRACT

OBJECTIVES: The purpose of this investigation was to examine the variability in vivarium temperature and the impact that this has on metabolic and behavioral outcomes in mice. METHODS: Daily vivarium temperature was monitored every day for a two-year period. Behavioral and metabolic phenotyping were assessed in male and female C57BL/6 (n = 71/sex) mice over the course of 2 years. RESULTS: Vivarium temperature was found to fluctuate on a monthly, daily, and even an hourly basis of approximately ±5ºC. A 5ºC change in temperature was found to result in daily changes in total energy expenditure (35% and 27%), resting energy expenditure (39% for both sexes), movement (51% and 37%), food consumption (35% and 29%), and sleep duration (15% and 13%) for female and male mice, respectively. CONCLUSIONS: Fluctuations in vivarium temperature can dramatically impact metabolic and behavioral outcomes, which impedes scientific reproducibility. This awareness and the guidelines we propose in this publication will hopefully help to enhance the reproducibility of pre-clinical animal research.


Subject(s)
Body Temperature Regulation , Energy Metabolism , Mice , Male , Female , Animals , Temperature , Mice, Inbred C57BL , Reproducibility of Results
7.
Sci Rep ; 12(1): 16668, 2022 10 05.
Article in English | MEDLINE | ID: mdl-36198723

ABSTRACT

Epidemiological literature indicates that women are less susceptible to type II diabetes (T2D) than males. The general consensus is that estrogen is protective, whereas its deficiency in post-menopause is associated with adiposity and impaired insulin sensitivity. However, epidemiological data suggests that males are more prone to developing T2D, and at a lower BMI, compared to females during post-menopausal years; suggesting that another factor, other than estrogen, protects females. We proposed to determine if adiponectin (APN) serves as this protective factor. An initial experiment was performed in which gonadally intact male and female mice were fed either a purified low-fat diet (LFD) or high-fat diet (HFD) (40% kcals from fat) for 16 weeks. An additional group of HFD ovariectomy (OVX) mice were included to assess estrogen deficiency's impact on obesity. Body composition, adipose tissue inflammation, ectopic lipid accumulation as well as glucose metabolism and insulin resistance were assessed. In corroboration with previous data, estrogen deficiency (OVX) exacerbated HFD-induced obesity in female mice. However, despite a higher body fat percentage and a similar degree of hepatic and skeletal muscle lipid accumulation, female OVX HFD-fed mice exhibited enhanced insulin sensitivity relative to HFD-fed males. Therefore, a subsequent HFD experiment was performed utilizing male and female (both gonadally intact and OVX) APN deficient mice (APN-/-) and wildtype littermates to determine if APN is the factor which protects OVX females from the similar degree of metabolic dysfunction as males in the setting of obesity. Indirect calorimetry was used to determine observed phenotype differences. APN deficiency limited adiposity and mitigated HFD-induced insulin resistance and adipose tissue inflammation in gonadally intact male and female, but not in OVX mice. Using indirect calorimetry, we uncovered that slight, but non-statistically significant differences in food intake and energy expenditure leading to a net difference in energy balance likely explain the reduced body weight exhibited by male APN-deficient mice. In conclusion, congenital APN deficiency is protective against obesity development in gonadally intact mice, however, in the setting of estrogen deficiency (OVX) this is not true. These findings suggest that gonadal status dictates the protective effects of congenital APN deficiency in the setting of HFD-induced obesity.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Adiponectin/deficiency , Animals , Diet, High-Fat/adverse effects , Estrogens/metabolism , Female , Glucose/metabolism , Inflammation/metabolism , Insulin Resistance/physiology , Lipids , Male , Metabolism, Inborn Errors , Mice , Mice, Inbred C57BL , Obesity/etiology , Obesity/metabolism , Ovariectomy
8.
BMC Complement Med Ther ; 22(1): 279, 2022 Oct 23.
Article in English | MEDLINE | ID: mdl-36274141

ABSTRACT

BACKGROUND: Quercetin is an organic flavonoid present in several fruits and vegetables. The anti-inflammatory, antiviral, antioxidant, cardio-protective, anti-carcinogenic and neuroprotective properties demonstrated by this dietary supplement endorses it as a possible treatment for inflammatory diseases and cancer. Unfortunately, conflicting research has cast uncertainties on the toxicity of quercetin. The main purpose of this study was to determine if quercetin has any toxic properties in mice at doses that have shown efficacy in pre-clinical studies regarding cancer, cancer therapy, and their off-target effects. METHODS: A sub-chronic toxicity study of quercetin was examined in male and female CD2F1 mice. Three different doses of quercetin (62, 125, and 250 mg/kg of diet) were infused into the AIN-76A purified diet and administered to mice ad libitum for 98 days. Body weight (BW), food consumption, water intake, body composition, blood count, behavior, and metabolic phenotype were assessed at various timepoints during the course of the experiment. Tissue and organs were evaluated for gross pathological changes and plasma was used to measure alkaline phosphatase (AP), aspartate transaminase (AST), and alanine transaminase (ALT). RESULTS: We found that low (62 mg/kg of diet), medium (125 mg/kg of diet), and high (250 mg/kg of diet) quercetin feeding had no discernible effect on body composition, organ function, behavior or metabolism. CONCLUSIONS: In summary, our study establishes that quercetin is safe for use in both female and male CD2F1 mice when given at ~ 12.5, 25, or 50 mg/kg of BW daily doses for 14 weeks (i.e. 98 days). Further studies will need to be conducted to determine any potential toxicity of quercetin following chronic ingestion.


Subject(s)
Antioxidants , Quercetin , Mice , Male , Female , Animals , Quercetin/toxicity , Antioxidants/toxicity , Antioxidants/metabolism , Alanine Transaminase , Alkaline Phosphatase , Body Weight , Flavonoids , Aspartate Aminotransferases , Antiviral Agents
9.
Physiol Genomics ; 54(11): 433-442, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36121133

ABSTRACT

miRNA155 (miR155) has emerged as an important regulator of breast cancer (BrCa) development. Studies have consistently noted an increase in miR155 levels in serum and/or tissues in patients with BrCa. However, what is less clear is whether this increase in miR155 is a reflection of oncogenic or tumor suppressive properties. To study the effects of miR155 in a transgenic model of BrCA, we developed an MMTV-PyMT mouse deficient in miR155 (miR155-/- PyMT). miR155-/- mice (n = 11) exhibited reduced tumor number and volume palpations at ∼14-18 wk of age compared with miR155 sufficient littermates (n = 12). At 19 wk, mammary glands were excised from tumors for RT-PCR, and tumors were counted, measured, and weighed. miR155-/- PyMT mice exhibited reduced tumor volume, number, and weight, which was confirmed by histopathological analysis. There was an increase in apoptosis with miR155 deficiency and a decrease in proliferation. As expected, miR155 deficiency resulted in upregulated gene expression of suppressor of cytokine signaling 1 (Socs1)-its direct target. There was a reduction in gene expression of macrophage markers (CD68, Adgre1, Itgax, Mrc1) with miR-155-/- and this was confirmed with immunofluorescence staining for F4/80. miR155-/- increased expression of M1 macrophage marker Nos2 and reduced expression of M2 macrophage markers IL-10, IL-4, Arg1, and MMP9. Overall, miR155 deficiency reduced BrCA and improved the tumor microenvironment through the reduction of genes associated with protumorigenic processes. However, given the inconsistencies in the literature, additional studies are needed before any attempts are made to harness miR155 as a potential oncogenic or tumor suppressive miRNA.NEW & NOTEWORTHY To examine the effects of miR155 in a transgenic model of breast cancer, we developed an MMTV-PyMT mouse-deficient in miR155. We demonstrate that global loss of miR155 resulted in blunted tumor growth through modulating the tumor microenvironment. Specifically, miR155-deficient mice had smaller and less invasive tumors, an increase in apoptosis and a decrease in proliferation, a reduction in tumor-associated macrophages, and the expression of genes associated with protumoral processes.


Subject(s)
Matrix Metalloproteinase 9 , MicroRNAs , Mice , Animals , Matrix Metalloproteinase 9/metabolism , Interleukin-10 , Tumor Burden , Interleukin-4 , Disease Models, Animal , Carcinogenesis , MicroRNAs/genetics , Tumor Microenvironment
10.
Cancer Biol Ther ; 23(1): 1-15, 2022 12 31.
Article in English | MEDLINE | ID: mdl-35968771

ABSTRACT

Fluorouracil/5-flourouracil (5FU) is a first-line chemotherapy drug for many cancer types; however, its associated toxicities contribute to poor quality of life and reduced dose intensities negatively impacting patient prognosis. While obesity remains a critical risk factor for most cancers, our understanding regarding how obesity may impact chemotherapy's toxicities is extremely limited. C56BL/6 mice were given high fat (Obese) or standard diets (Lean) for 4 months and then subjected to three cycles of 5FU (5d-40 mg/kg Lean Mass, 9d rest) or PBS vehicle control. Shockingly, only 60% of Obese survived 3 cycles compared to 100% of Lean, and Obese lost significantly more body weight. Dihydropyrimidine dehydrogenase (DPD), the enzyme responsible for 5FU catabolism, was reduced in obese livers. Total white blood cells, neutrophils, and lymphocytes were reduced in Obese 5FU compared to Lean 5FU and PBS controls. While adipocyte size was not affected by 5FU in Obese, skeletal muscle mass and myofibrillar cross section area were decreased following 5FU in Lean and Obese. Although adipose tissue inflammatory gene expression was not impacted by 5FU, distinct perturbations to skeletal muscle inflammatory gene expression and immune cell populations (CD45+ Immune cells, CD45+CD11b+CD68+ macrophages and CD45+CD11b+Ly6clo/int macrophage/monocytes) were observed in Obese only. Our evidence suggests that obesity induced liver pathologies and reduced DPD exacerbated 5FU toxicities. While obesity has been suggested to protect against cancer/chemotherapy-induced cachexia and other toxicities, our results demonstrate that obese mice are not protected, but rather show evidence of increased susceptibility to 5FU-induced cytotoxicity even when dosed for relative lean mass.


Subject(s)
Antineoplastic Agents , Neoplasms , Animals , Cachexia/etiology , Dihydrouracil Dehydrogenase (NADP) , Fluorouracil/adverse effects , Mice , Obesity , Quality of Life
11.
Endocrinology ; 163(11)2022 10 11.
Article in English | MEDLINE | ID: mdl-36039699

ABSTRACT

AIMS: We developed a novel mouse model with increased skeletal muscle estrogen content via inducible, skeletal-muscle-specific aromatase overexpression (SkM-Arom↑). We proposed to examine the effect that increased skeletal muscle estrogen both in gonadally intact and ovariectomized (OVX) female mice has on preventing or rescuing high-fat diet (HFD)-induced obesity. METHODS: In the prevention experiment, gonadally intact and OVX SkM-Arom↑ mice and littermate controls were fed a low-fat diet (LFD) or HFD for 13 weeks. SkM-Arom↑ was induced at the initiation of dietary treatment. In the intervention experiment, gonadally intact and OVX SkM-Arom↑ mice and littermate controls were fed an HFD for 14 weeks before induction of SkM-Arom↑ for 6 weeks. Glucose tolerance, insulin action, adipose tissue inflammation, and body composition were assessed. Liquid chromatography-mass spectrometry was used to determine circulating and skeletal muscle steroid content. RESULTS: SkM-Arom↑ significantly increased skeletal muscle 17ß-estradiol (E2) and estrone (E1) in both experiments. Interestingly, this resulted in leakage of estrogens into circulation, producing a physiologically relevant E2 concentration. Consequently, bone mineral density (BMD) was enhanced and adipose tissue inflammation was reduced in the prevention experiment only. However, no benefits were seen with respect to changes in adiposity or metabolic outcomes. CONCLUSION: We show that increasing skeletal muscle estrogen content does not provide a metabolic benefit in gonadally intact and OVX female mice in the setting of obesity. However, a chronic physiological concentration of circulating E2 can improve BMD and reduce adipose tissue inflammation independently of a metabolic benefit or changes in adiposity.


Subject(s)
Insulin Resistance , Insulins , Animals , Aromatase/metabolism , Diet, High-Fat/adverse effects , Estradiol/pharmacology , Estrogens/pharmacology , Estrone/pharmacology , Female , Glucose/metabolism , Inflammation/metabolism , Insulin Resistance/physiology , Insulins/metabolism , Insulins/pharmacology , Mice , Mice, Inbred C57BL , Muscle, Skeletal/metabolism , Obesity/metabolism
12.
PLoS One ; 17(6): e0270338, 2022.
Article in English | MEDLINE | ID: mdl-35737651

ABSTRACT

Cancer patients can develop visceral, somatic, and neuropathic pain, largely due to the malignancy itself and its treatments. Often cancer patients and survivors turn to the use of complementary and alternative medicine (CAM) to alleviate pain and fatigue. Thus, it is necessary to investigate how CAM therapies work as novel analgesics to treat cancer pain. Ojeok-san (OJS) is an herbal formula consisting of seventeen herbs. This herbal formula has been shown to possess anti-inflammatory, immunoregulatory, and analgesic properties. In this study, we examined the potential beneficial effects and mechanism of action of OJS in a preclinical model of colitis-associated colorectal cancer. Male and female C57BL/6J mice were exposed to the carcinogen, azoxymethane (AOM, 10 mg/kg) and a chemical inflammatory driver, dextran sulfate sodium (DSS1-2%), to promote tumorigenesis in the colorectum. OJS was given orally (500, 1000, and 2000 mg/kg) to determine its influence on disease activity, tumor burden, nociception, sedation, Erk signaling, and behavioral and metabolic outcomes. In addition, in vitro studies were performed to assess CT-26 cell viability, dorsal root ganglia (DRG) activation, and bone-marrow-derived macrophage (BMDM) inflammatory response to lipopolysaccharide stimulation after OJS treatment. We found that administration of 2000 mg/kg of OJS was able to mitigate mechanical somatic and visceral nociception via Erk signaling without affecting symptom score and polyp number. Moreover, we discovered that OJS has sedative properties and elicits prolonged total sleeping time in AOM/DSS mice. Our in vitro experiments showed that OJS has the capacity to reduce TNFα gene expression in LPS-stimulated BMDM, but no changes were observed in DRG spike number and CT-26 cell proliferation. Taken together, these data suggest that OJS ameliorates nociception in mice and warrants further examination as a potential CAM therapy to promote analgesia.


Subject(s)
Colitis , Colorectal Neoplasms , Animals , Azoxymethane/toxicity , Colitis/chemically induced , Colitis/complications , Colitis/drug therapy , Colorectal Neoplasms/chemically induced , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , Dextran Sulfate/adverse effects , Disease Models, Animal , Female , Humans , Male , Mice , Mice, Inbred C57BL , Nociception , Plant Extracts
13.
Integr Cancer Ther ; 21: 15347354211067469, 2022.
Article in English | MEDLINE | ID: mdl-34984952

ABSTRACT

Gastrointestinal (GI) cancers cause one-third of all cancer-related deaths worldwide. Natural compounds are emerging as alternative or adjuvant cancer therapies given their distinct advantage of manipulating multiple pathways to both suppress tumor growth and alleviate cancer comorbidities; however, concerns regarding efficacy, bioavailability, and safety are barriers to their development for clinical use. Emodin (1,3,8-trihydroxy-6-methylanthraquinone), a Chinese herb-derived anthraquinone, has been shown to exert anti-tumor effects in colon, liver, and pancreatic cancers. While the mechanisms underlying emodin's tumoricidal effects continue to be unearthed, recent evidence highlights a role for mitochondrial mediated apoptosis, modulated stress and inflammatory signaling pathways, and blunted angiogenesis. The goals of this review are to (1) highlight emodin's anti-cancer properties within GI cancers, (2) discuss the known anti-cancer mechanisms of action of emodin, (3) address emodin's potential as a treatment complementary to standard chemotherapeutics, (4) assess the efficacy and bioavailability of emodin derivatives as they relate to cancer, and (5) evaluate the safety of emodin.


Subject(s)
Antineoplastic Agents , Emodin , Gastrointestinal Neoplasms , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis , Emodin/pharmacology , Emodin/therapeutic use , Gastrointestinal Neoplasms/drug therapy , Humans , Signal Transduction
14.
Nutrients ; 15(1)2022 Dec 25.
Article in English | MEDLINE | ID: mdl-36615760

ABSTRACT

A cachexia diagnosis is associated with a doubling in hospital stay and increased healthcare cost for cancer patients and most cachectic patients do not survive treatment. Unfortunately, complexity in treating cachexia is amplified by both the underlying malignancy and the anti-cancer therapy which can independently promote cachexia. Quercetin, an organic polyphenolic flavonoid, has demonstrated anti-inflammatory and antioxidant properties with promise in protecting against cancer and chemotherapy-induced dysfunction; however, whether quercetin is efficacious in maintaining muscle mass in tumor-bearing animals receiving chemotherapy has not been investigated. C26 tumor-bearing mice were given 5-fluorouracil (5FU; 30 mg/kg of lean mass i.p.) concomitant with quercetin (Quer; 50 mg/kg of body weight via oral gavage) or vehicle. Both C26 + 5FU and C26 + 5FU + Quer had similar body weight loss; however, muscle mass and cross-sectional area was greater in C26 + 5FU + Quer compared to C26 + 5FU. Additionally, C26 + 5FU + Quer had a greater number and larger intermyofibrillar mitochondria with increased relative protein expression of mitochondrial complexes V, III, and II as well as cytochrome c expression. C26 + 5FU + Quer also had increased MFN1 and reduced FIS1 relative protein expression without apparent benefits to muscle inflammatory signaling. Our data suggest that quercetin protected against cancer and chemotherapy-induced muscle mass loss through improving mitochondrial homeostatic balance.


Subject(s)
Antineoplastic Agents , Neoplasms , Animals , Mice , Quercetin/pharmacology , Quercetin/therapeutic use , Cachexia/chemically induced , Cachexia/drug therapy , Cachexia/metabolism , Muscle, Skeletal/metabolism , Disease Models, Animal , Neoplasms/complications , Neoplasms/drug therapy , Neoplasms/metabolism , Fluorouracil/adverse effects , Mitochondria/metabolism , Antineoplastic Agents/adverse effects , Antineoplastic Agents/metabolism
15.
FASEB J ; 35(7): e21665, 2021 07.
Article in English | MEDLINE | ID: mdl-34131955

ABSTRACT

The pro-inflammatory cytokine, tumor necrosis factor-alpha (TNF-α), has been suggested to be a key factor in the induction of obesity-associated metabolic dysfunction. However, the role that macrophage-derived TNF-α has on regulating metabolic perturbations in obesity is not completely understood. Therefore, we utilized the TNF-αFlox/Flox(F/F) , LyzMcre± mouse model to determine the impact that macrophage TNF-α deletion has on the development of high-fat diet (HFD)-induced obesity. At 10 weeks of age, male littermates were randomly assigned to 1 of 4 groups: TNF-αF/F low-fat diet (TNF-αF/F LFD), TNF-αF/F,LyzMCre LFD, TNF-αF/F HFD, or TNF-αF/F,LyzMCre HFD (n = 16-28/group) and were fed their respective diets for 18 weeks. Body weight was assessed throughout the course of the experiment. Body composition, hepatic lipid accumulation, and metabolic outcomes were also examined. A microarray gene expression experiment was performed from RNA isolated from epididymal adipose tissue of the HFD-fed groups (n = 10/group) and results were verified via qRT-PCR for all groups. Macrophage-derived TNF-α deletion significantly reduced adipose tissue TNF-α gene expression and circulating TNF-α and downregulated genes linked to the toll-like receptor (TLR) and NFκB signaling pathways. However, macrophage TNF-α deletion had no effect on hindering the development of obesity, hepatic lipid accumulation, or improving glucose metabolism or insulin sensitivity. In conclusion, macrophage-derived TNF-α is not a causative factor for the induction of obesity-associated metabolic dysfunction.


Subject(s)
Inflammation/pathology , Insulin Resistance , Macrophages/metabolism , Metabolic Syndrome/pathology , Obesity/complications , Tumor Necrosis Factor-alpha/physiology , Animals , Diet, High-Fat , Female , Inflammation/etiology , Inflammation/metabolism , Male , Metabolic Syndrome/etiology , Metabolic Syndrome/metabolism , Mice, Inbred C57BL , Mice, Knockout
16.
BMC Pharmacol Toxicol ; 22(1): 9, 2021 01 28.
Article in English | MEDLINE | ID: mdl-33509280

ABSTRACT

BACKGROUND: Emodin, a natural anthraquinone, has shown potential as an effective therapeutic agent in the treatment of many diseases including cancer. However, its clinical development is hindered by uncertainties surrounding its potential toxicity. The primary purpose of this study was to uncover any potential toxic properties of emodin in mice at doses that have been shown to have efficacy in our cancer studies. In addition, we sought to assess the time course of emodin clearance when administered both intraperitoneally (I.P.) and orally (P.O.) in order to begin to establish effective dosing intervals. METHODS: We performed a subchronic (12 week) toxicity study using 3 different doses of emodin (~ 20 mg/kg, 40 mg/kg, and 80 mg/kg) infused into the AIN-76A diet of male and female C57BL/6 mice (n = 5/group/sex). Body weight and composition were assessed following the 12-week feeding regime. Tissues were harvested and assessed for gross pathological changes and blood was collected for a complete blood count and evaluation of alanine transaminase (ALT), aspartate transaminase (AST) and creatinine. For the pharmacokinetic study, emodin was delivered intraperitoneally I.P. or P.O. at 20 mg/kg or 40 mg/kg doses to male and female mice (n = 4/group/sex/time-point) and circulating levels of emodin were determined at 1, 4 and 12 h following administration via liquid chromatography with tandem mass spectrometry (LC-MS/MS) analysis. RESULTS: We found that 12 weeks of low (20 mg/kg), medium (40 mg/kg), or high (80 mg/kg) emodin feeding did not cause pathophysiological perturbations in major organs. We also found that glucuronidated emodin peaks at 1 h for both I.P. and P.O. administered emodin and is eliminated by 12 h. Interestingly, female mice appear to metabolize emodin at a faster rate than male mice as evidenced by greater levels of glucuronidated emodin at the 1 h time-point (40 mg/kg for both I.P. and P.O. and 20 mg/kg I.P.) and the 4-h time-point (20 mg/kg I.P.). CONCLUSIONS: In summary, our studies establish that 1) emodin is safe for use in both male and female mice when given at 20, 40, and 80 mg/kg doses for 12 weeks and 2) sex differences should be considered when establishing dosing intervals for emodin treatment.


Subject(s)
Antineoplastic Agents/toxicity , Emodin/toxicity , Protein Kinase Inhibitors/toxicity , Animals , Antineoplastic Agents/blood , Antineoplastic Agents/pharmacokinetics , Colon/anatomy & histology , Colon/drug effects , Emodin/blood , Emodin/pharmacokinetics , Female , Glucuronides/metabolism , Heart/anatomy & histology , Heart/drug effects , Intestine, Small/anatomy & histology , Intestine, Small/drug effects , Kidney/anatomy & histology , Kidney/drug effects , Liver/anatomy & histology , Liver/drug effects , Male , Mice, Inbred C57BL , Protein Kinase Inhibitors/blood , Protein Kinase Inhibitors/pharmacokinetics , Sex Characteristics , Spleen/anatomy & histology , Spleen/drug effects , Toxicity Tests, Subchronic
17.
Front Physiol ; 11: 593468, 2020.
Article in English | MEDLINE | ID: mdl-33364975

ABSTRACT

5 fluorouracil (5FU) has been a first-choice chemotherapy drug for several cancer types (e.g., colon, breast, head, and neck); however, its efficacy is diminished by patient acquired resistance and pervasive side effects. Leukopenia is a hallmark of 5FU; however, the impact of 5FU-induced leukopenia on healthy tissue is only becoming unearthed. Recently, skeletal muscle has been shown to be impacted by 5FU in clinical and preclinical settings and weakness and fatigue remain among the most consistent complaints in cancer patients undergoing chemotherapy. Monocytes, or more specifically macrophages, are the predominate immune cell in skeletal muscle which regulate turnover and homeostasis through removal of damaged or old materials as well as coordinate skeletal muscle repair and remodeling. Whether 5FU-induced leukopenia extends beyond circulation to impact resident and infiltrating skeletal muscle immune cells has not been examined. The purpose of the study was to examine the acute effects of 5FU on resident and infiltrating skeletal muscle monocytes and inflammatory mediators. Male C57BL/6 mice were given a physiologically translatable dose (35 mg/kg) of 5FU, or PBS, i.p. once daily for 5 days to recapitulate 1 dosing cycle. Our results demonstrate that 5FU reduced circulating leukocytes, erythrocytes, and thrombocytes while inducing significant body weight loss (>5%). Flow cytometry analysis of the skeletal muscle indicated a reduction in total CD45+ immune cells with a corresponding decrease in total CD45+CD11b+ monocytes. There was a strong relationship between circulating leukocytes and skeletal muscle CD45+ immune cells. Skeletal muscle Ly6cHigh activated monocytes and M1-like macrophages were reduced with 5FU treatment while total M2-like CD206+CD11c- macrophages were unchanged. Interestingly, 5FU reduced bone marrow CD45+ immune cells and CD45+CD11b+ monocytes. Our results demonstrate that 5FU induced body weight loss and decreased skeletal muscle CD45+ immune cells in association with a reduction in infiltrating Ly6cHigh monocytes. Interestingly, the loss of skeletal muscle immune cells occurred with bone marrow cell cycle arrest. Together our results highlight that skeletal muscle is sensitive to 5FU's off-target effects which disrupts both circulating and skeletal muscle immune cells.

18.
J Appl Physiol (1985) ; 129(4): 909-919, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32853106

ABSTRACT

Weight fluctuations are common among individuals with obesity and are associated with increased morbidity. We examined adipose tissue immune and inflammatory markers in mice following weight loss and partial weight regain. Male C57BL/6 mice were randomized into four groups (n = 8-10/group): low-fat diet for 32 wk (LFD), high-fat diet for 32 wk (HFD), LFD for 28 wk and then changed to a HFD for 4 wk (LFD→H), and HFD for 21 wk and then changed to LFD for 7 wk and then changed to HFD for 4 wk (HFD→L→H). LFD→H and HFD→L→H mice did not differ in body weight, fat mass, or fat percentage; however, these parameters were greater than in LFD (P < 0.05) but lower than in HFD (P < 0.05). HFD→L→H mice had smaller adipocytes than HFD and LFD→H (P < 0.05) but not LFD mice. Expressions of CD11c and CD8a genes were elevated in epididymal fat of HFD→L→H compared with LFD→H and LFD (P < 0.05)mice. However, CD11c was lower in HFD→L→H than in HFD mice (P < 0.05), but there was no difference in CD8a between these groups. TNFα and IFNγ expressions were increased in HFD→L→H compared with LFD and LFD→H mice (P < 0.05), although HFD→L→H had lower expression of these cytokines than HFD (P < 0.05). IL-1ß was greater in HFD→L→H compared with LFD (P < 0.05) but was not different from LFD→H or HFD mice. Monocyte chemoattractant protein-1 was lower (P < 0.05) in HFD→L→H than in LFD→H. These data reinforce the importance of maintaining a body weight in the range that is recommended for optimal health to reduce immune and inflammatory perturbations associated with obesity.NEW & NOTEWORTHY We examined the immune and inflammatory status of adipose tissue in mice after they underwent weight loss followed by partial weight regain. We show an increase in selected immune cells and inflammatory mediators, in high-fat diet-fed mice that had prior exposure to a high-fat diet. Although weight fluctuations appear to exacerbate immune cell abundance and inflammation in adipose tissue, severity is less than in mice that were exposed to sustained high-fat diet feedings.


Subject(s)
Adipose Tissue , Weight Loss , Animals , Body Weight , Diet, High-Fat , Male , Mice , Mice, Inbred C57BL , Weight Gain
19.
World J Hepatol ; 11(8): 619-637, 2019 Aug 27.
Article in English | MEDLINE | ID: mdl-31528245

ABSTRACT

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) has become an epidemic largely due to the worldwide increase in obesity. While lifestyle modifications and pharmacotherapies have been used to alleviate NAFLD, successful treatment options are limited. One of the main barriers to finding safe and effective drugs for long-term use in NAFLD is the fast initiation and progression of disease in the available preclinical models. Therefore, we are in need of preclinical models that (1) mimic the human manifestation of NAFLD and (2) have a longer progression time to allow for the design of superior treatments. AIM: To characterize a model of prolonged high-fat diet (HFD) feeding for investigation of the long-term progression of NAFLD. METHODS: In this study, we utilized prolonged HFD feeding to examine NAFLD features in C57BL/6 male mice. We fed mice with a HFD (60% fat, 20% protein, and 20% carbohydrate) for 80 wk to promote obesity (Old-HFD group, n = 18). A low-fat diet (LFD) (14% fat, 32% protein, and 54% carbohydrate) was administered for the same duration to age-matched mice (Old-LFD group, n = 15). An additional group of mice was maintained on the LFD (Young-LFD, n = 20) for a shorter duration (6 wk) to distinguish between age-dependent and age-independent effects. Liver, colon, adipose tissue, and feces were collected for histological and molecular assessments. RESULTS: Prolonged HFD feeding led to obesity and insulin resistance. Histological analysis in the liver of HFD mice demonstrated steatosis, cell injury, portal and lobular inflammation and fibrosis. In addition, molecular analysis for markers of endoplasmic reticulum stress established that the liver tissue of HFD mice have increased phosphorylated Jnk and CHOP. Lastly, we evaluated the gut microbial composition of Old-LFD and Old-HFD. We observed that prolonged HFD feeding in mice increased the relative abundance of the Firmicutes phylum. At the genus level, we observed a significant increase in the abundance of Adercreutzia, Coprococcus, Dorea, and Ruminococcus and decreased relative abundance of Turicibacter and Anaeroplasma in HFD mice. CONCLUSION: Overall, these data suggest that chronic HFD consumption in mice can mimic pathophysiological and some microbial events observed in NAFLD patients.

20.
Cancer Biol Ther ; 20(4): 487-496, 2019.
Article in English | MEDLINE | ID: mdl-30388923

ABSTRACT

Clinical studies provide strong evidence that obesity and associated adipose tissue (AT) inflammation are risk factors for breast cancer (BrCA); however, mechanistic knowledge of the interaction of obesity, BrCA, and menopausal status has proven to be not only lacking, but contradictory. Obesity-induced inflammation and elevated biosynthesis of estrogens, through aromatase-mediated metabolism of precursors, have been linked with hormone receptor positive (HP) postmenopausal BrCA but not previously associated with premenopausal BrCA risk. Thus, further delineation of the interaction of obesity, inflammation, and aromatase is required for the development of therapeutic treatment options. The purpose of this study was to examine the effect of high fat diet (HFD)-induced inflammation on tumorigenesis in a model of pre and postmenopausal HP BrCA. Female PyMT/MMTV ovary intact and ovariectomized mice were fed low and HFD diets to examine the role of obesity-induced inflammation and hormone production in the development of HP BrCA. Tumor statistics for number, volume, weight, histopathology scoring and gene expression of macrophage and inflammatory mediators were measured in the AT and mammary gland at sacrifice. HFD feedings of ovary intact mice resulted in increased adiposity and tumorigenesis, indicated by increased primary tumor volume, multiplicity, tumor burden, and increased tumor progression represented by histopathological scoring. HFD-induced obesity significantly upregulated aromatase and macrophage marker expression in the AT (F4/80 and CD11c) and mammary gland (Mertk) in a premenopausal model of BrCA. Conversely, HFD feedings had no significant effect on tumorigenesis in a postmenopausal model of BrCA despite large increases in adiposity in ovariectomized mice; however, limitations within the model may have precluded any significant findings. This data suggests that obesity-induced increases in inflammation and hormone production, via aromatase expression, is associated with increases in tumorigenesis in a model of premenopausal HP BrCA in the PyMT/MMTV strain.


Subject(s)
Carcinogenesis/pathology , Diet, High-Fat/adverse effects , Disease Models, Animal , Inflammation/etiology , Mammary Neoplasms, Experimental/etiology , Obesity/complications , Animals , Female , Inflammation/metabolism , Inflammation/pathology , Inflammation Mediators/metabolism , Mammary Neoplasms, Experimental/pathology , Mice , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL
...