Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 24(11)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38894411

ABSTRACT

This study aimed to investigate near-infrared spectroscopy (NIRS) in combination with classification methods for the discrimination of fresh and once- or twice-freeze-thawed fish. An experiment was carried out with common carp (Cyprinus carpio). From each fish, test pieces were cut from the dorsal and ventral regions and measured from the skin side as fresh, after single freezing at minus 18 °C for 15 ÷ 28 days and 15 ÷ 21 days for the second freezing after the freeze-thawing cycle. NIRS measurements were performed via a NIRQuest 512 spectrometer at the region of 900-1700 nm in Reflection mode. The Pirouette 4.5 software was used for data processing. SIMCA and PLS-DA models were developed for classification, and their performance was estimated using the F1 score and total accuracy. The predictive power of each model was evaluated for fish samples in the fresh, single-freezing, and second-freezing classes. Additionally, aquagrams were calculated. Differences in the spectra between fresh and frozen samples were observed. They might be assigned mainly to the O-H and N-H bands. The aquagrams confirmed changes in water organization in the fish samples due to freezing-thawing. The total accuracy of the SIMCA models for the dorsal samples was 98.23% for the calibration set and 90.55% for the validation set. For the ventral samples, respective values were 99.28 and 79.70%. Similar accuracy was found for the PLS-PA models. The NIR spectroscopy and tested classification methods have a potential for nondestructively discriminating fresh from frozen-thawed fish in as methods to protect against fish meat food fraud.


Subject(s)
Carps , Freezing , Spectroscopy, Near-Infrared , Carps/physiology , Animals , Spectroscopy, Near-Infrared/methods
2.
Sensors (Basel) ; 23(24)2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38139522

ABSTRACT

The productivity of plants is considerably affected by various environmental stresses. Exploring the specific pattern of the near-infrared spectral data acquired non-destructively from plants subjected to stress can contribute to a better understanding of biophysical and biochemical processes in plants. Experiments for investigating NIR spectra of maize plants subjected to water stress were conducted. Two maize lines were used: US corn-belt inbred line B37 and mutant inbred XM 87-136, characterized by very high drought tolerance. After reaching the 4-leaf stage, 10 plants from each line were subjected to water stress, and 10 plants were used as control, kept under a regular water regime. The drought lasted until day 17 and then the plants were recovered by watering for 4 days. A MicroNIR OnSite-W Spectrometer (VIAVI Solutions Inc., Chandler, AZ, USA) was used for in vivo measurement of each maize leaf spectra. PLS models for determining drought days were created and aquagrams were calculated separately for the plants' second, third, and fourth leaves. Differences in absorption spectra were observed between control, stressed, and recovered maize plants, as well as between different measurement days of stressed plants. Aquagrams were used to visualize the water spectral pattern in maize leaves and how it changes along the drought process.


Subject(s)
Dehydration , Zea mays , Stress, Physiological , Droughts , Plant Leaves
3.
Microorganisms ; 11(9)2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37764192

ABSTRACT

One of the main challenges facing the development of aquaponics is disease control, due on one hand to the fact that plants cannot be treated with chemicals because they can lead to mortality in cultured fish. The aim of this study was to apply the visible-near-infrared spectroscopy and vegetation index approach to test aquaponically cultivated lettuce (Lactuca sativa L.) infected with different fungal pathogens (Aspergillus niger, Fusarium oxysporum, and Alternaria alternata). The lettuces on the third leaf formation were placed in tanks (with dimensions 1 m/0.50 m/0.35 m) filled up with water from the aquaponics system every second day. In this study, we included reference fungal strains Aspergillus niger NBIMCC 3252, Fusarium oxysporum NBIMCC 125, and Alternaria alternata NBIMCC 109. Diffuse reflectance spectra of the leaves of lettuce were measured directly on the plants using a USB4000 spectrometer in the 450-1100 nm wavelength range. In near-infrared spectral range, the reflectance values of infected leaves are lower than those of the control, which indicates that some changes in cell structures occurred as a result of the fungal infection. All three investigated pathogens had a statistically significant effect on leaf water content and water band index. Vegetative indices such as Chlorophyll Absorption in Reflectance Index (CARI), Modified chlorophyll absorption in reflectance index (MCARI), Plant Senescence Reflectance Index (PSRI), Red Edge Index (REI2), Red Edge Index (REI3), and Water band index (WBI) were found to be effective in distinguishing infected plants from healthy ones, with WBI demonstrating the greatest reliability.

4.
Spectrochim Acta A Mol Biomol Spectrosc ; 279: 121378, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-35617835

ABSTRACT

Water spectrum of any aqueous system contains information about OH covalent and hydrogen bonds that are highly influenced by the environment and the rest of the molecules in the system. When aquaphotomics is used to analyze the water near infrared (NIR) spectra, the information about the water molecular structure can be obtained as a function of internal and external factors. The objective of this research is to apply aquaphotomics analysis to evaluate different groundwaters by using their NIR unique spectral pattern, robust to external influences of temperature and humidity, that can potentially be used for water type identification and screening practice. Two groundwaters obtained at different depths and their mixture, differing in mineral content and molecular structure were monitored on a daily basis using portable visible/NIR (vis/NIR) spectrometer during three consecutive years. The spectra were pre-processed by smoothing and multiplicative scatter correction (MSC) to remove noise and baseline effects. Results showed that NIR spectral patterns of groundwater samples were affected by changes in environmental factors - temperature, humidity, time and others. The water absorbance bands which are highly influenced by humidity and temperature in short wavelength NIR region were identified. Their avoidance resulted in obtaining consistent spectral patterns during the entire monitoring period, unique for each groundwater, that can be used as its fingerprint and monitored over time. Consistency and uniqueness of the spectral pattern for each groundwater provide a potential to use the deviation of spectral pattern as an indicator of changes in the water. These results confirm that vis/NIR spectral pattern can be used as an integrative marker of water status, stable over time, providing the basis for an efficient cost-effective method for monitoring of water functionality.


Subject(s)
Groundwater , Spectroscopy, Near-Infrared , Hydrogen Bonding , Molecular Structure , Spectroscopy, Near-Infrared/methods , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...