Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 22(11)2022 Jun 03.
Article in English | MEDLINE | ID: mdl-35684885

ABSTRACT

Monitoring the vital signs of mice is an essential practice during imaging procedures to avoid populational losses and improve image quality. For this purpose, a system based on a set of devices (piezoelectric sensor, optical module and thermistor) able to detect the heart rate, respiratory rate, body temperature and arterial blood oxygen saturation (SpO2) in mice anesthetized with sevoflurane was implemented. Results were validated by comparison with the reported literature on similar anesthetics. A new non-invasive electrocardiogram (ECG) module was developed, and its first results reflect the viability of its integration in the system. The sensors were strategically positioned on mice, and the signals were acquired through a custom-made printed circuit board during imaging procedures with a micro-PET (Positron Emission Tomography). For sevoflurane concentration of 1.5%, the average values obtained were: 388 bpm (beats/minute), 124 rpm (respirations/minute) and 88.9% for the heart rate, respiratory rate and SpO2, respectively. From the ECG information, the value obtained for the heart rate was around 352 bpm for injectable anesthesia. The results compare favorably to the ones established in the literature, proving the reliability of the proposed system. The ECG measurements show its potential for mice heart monitoring during imaging acquisitions and thus for integration into the developed system.


Subject(s)
Respiratory Rate , Vital Signs , Animals , Mice , Monitoring, Physiologic/methods , Reproducibility of Results , Sevoflurane , Vital Signs/physiology
3.
Nature ; 589(7843): 527-531, 2021 01.
Article in English | MEDLINE | ID: mdl-33505036

ABSTRACT

The energy levels of hydrogen-like atomic systems can be calculated with great precision. Starting from their quantum mechanical solution, they have been refined over the years to include the electron spin, the relativistic and quantum field effects, and tiny energy shifts related to the complex structure of the nucleus. These energy shifts caused by the nuclear structure are vastly magnified in hydrogen-like systems formed by a negative muon and a nucleus, so spectroscopy of these muonic ions can be used to investigate the nuclear structure with high precision. Here we present the measurement of two 2S-2P transitions in the muonic helium-4 ion that yields a precise determination of the root-mean-square charge radius of the α particle of 1.67824(83) femtometres. This determination from atomic spectroscopy is in excellent agreement with the value from electron scattering1, but a factor of 4.8 more precise, providing a benchmark for few-nucleon theories, lattice quantum chromodynamics and electron scattering. This agreement also constrains several beyond-standard-model theories proposed to explain the proton-radius puzzle2-5, in line with recent determinations of the proton charge radius6-9, and establishes spectroscopy of light muonic atoms and ions as a precise tool for studies of nuclear properties.

4.
Front Neurosci ; 14: 589897, 2020.
Article in English | MEDLINE | ID: mdl-33584173

ABSTRACT

Chronic cocaine use has been shown to lead to neurotoxicity in rodents and humans, being associated with high morbidity and mortality rates. However, recreational use, which may lead to addictive behavior, is often neglected. This occurs, in part, due to the belief that exposure to low doses of cocaine comes with no brain damage risk. Cocaine addicts have shown glucose metabolism changes related to dopamine brain activity and reduced volume of striatal gray matter. This work aims to evaluate the morphological brain changes underlying metabolic and locomotor behavioral outcome, in response to a single low dose of cocaine in a pre-clinical study. In this context, a Balb-c mouse model has been chosen, and animals were injected with a single dose of cocaine (0.5 mg/kg). Control animals were injected with saline. A behavioral test, positron emission tomography (PET) imaging, and anatomopathological studies were conducted with this low dose of cocaine, to study functional, metabolic, and morphological brain changes, respectively. Animals exposed to this cocaine dose showed similar open field activity and brain metabolic activity as compared with controls. However, histological analysis showed alterations in the prefrontal cortex and hippocampus of mice exposed to cocaine. For the first time, it has been demonstrated that a single low dose of cocaine, which can cause no locomotor behavioral and brain metabolic changes, can induce structural damage. These brain changes must always be considered regardless of the dosage used. It is essential to alert the population even against the consumption of low doses of cocaine.

5.
Science ; 353(6300): 669-73, 2016 Aug 12.
Article in English | MEDLINE | ID: mdl-27516595

ABSTRACT

The deuteron is the simplest compound nucleus, composed of one proton and one neutron. Deuteron properties such as the root-mean-square charge radius rd and the polarizability serve as important benchmarks for understanding the nuclear forces and structure. Muonic deuterium µd is the exotic atom formed by a deuteron and a negative muon µ(-). We measured three 2S-2P transitions in µd and obtain r(d) = 2.12562(78) fm, which is 2.7 times more accurate but 7.5σ smaller than the CODATA-2010 value r(d) = 2.1424(21) fm. The µd value is also 3.5σ smaller than the r(d) value from electronic deuterium spectroscopy. The smaller r(d), when combined with the electronic isotope shift, yields a "small" proton radius r(p), similar to the one from muonic hydrogen, amplifying the proton radius puzzle.

6.
Rev Sci Instrum ; 86(5): 053102, 2015 May.
Article in English | MEDLINE | ID: mdl-26026509

ABSTRACT

Avalanche photodiodes are commonly used as detectors for low energy x-rays. In this work, we report on a fitting technique used to account for different detector responses resulting from photoabsorption in the various avalanche photodiode layers. The use of this technique results in an improvement of the energy resolution at 8.2 keV by up to a factor of 2 and corrects the timing information by up to 25 ns to account for space dependent electron drift time. In addition, this waveform analysis is used for particle identification, e.g., to distinguish between x-rays and MeV electrons in our experiment.

7.
Science ; 339(6118): 417-20, 2013 Jan 25.
Article in English | MEDLINE | ID: mdl-23349284

ABSTRACT

Accurate knowledge of the charge and Zemach radii of the proton is essential, not only for understanding its structure but also as input for tests of bound-state quantum electrodynamics and its predictions for the energy levels of hydrogen. These radii may be extracted from the laser spectroscopy of muonic hydrogen (µp, that is, a proton orbited by a muon). We measured the 2S(1/2)(F=0)-2P(3/2)(F=1) transition frequency in µp to be 54611.16(1.05) gigahertz (numbers in parentheses indicate one standard deviation of uncertainty) and reevaluated the 2S(1/2)(F=1)-2P(3/2)(F=2) transition frequency, yielding 49881.35(65) gigahertz. From the measurements, we determined the Zemach radius, r(Z) = 1.082(37) femtometers, and the magnetic radius, r(M) = 0.87(6) femtometer, of the proton. We also extracted the charge radius, r(E) = 0.84087(39) femtometer, with an order of magnitude more precision than the 2010-CODATA value and at 7σ variance with respect to it, thus reinforcing the proton radius puzzle.

8.
Nature ; 466(7303): 213-6, 2010 Jul 08.
Article in English | MEDLINE | ID: mdl-20613837

ABSTRACT

The proton is the primary building block of the visible Universe, but many of its properties-such as its charge radius and its anomalous magnetic moment-are not well understood. The root-mean-square charge radius, r(p), has been determined with an accuracy of 2 per cent (at best) by electron-proton scattering experiments. The present most accurate value of r(p) (with an uncertainty of 1 per cent) is given by the CODATA compilation of physical constants. This value is based mainly on precision spectroscopy of atomic hydrogen and calculations of bound-state quantum electrodynamics (QED; refs 8, 9). The accuracy of r(p) as deduced from electron-proton scattering limits the testing of bound-state QED in atomic hydrogen as well as the determination of the Rydberg constant (currently the most accurately measured fundamental physical constant). An attractive means to improve the accuracy in the measurement of r(p) is provided by muonic hydrogen (a proton orbited by a negative muon); its much smaller Bohr radius compared to ordinary atomic hydrogen causes enhancement of effects related to the finite size of the proton. In particular, the Lamb shift (the energy difference between the 2S(1/2) and 2P(1/2) states) is affected by as much as 2 per cent. Here we use pulsed laser spectroscopy to measure a muonic Lamb shift of 49,881.88(76) GHz. On the basis of present calculations of fine and hyperfine splittings and QED terms, we find r(p) = 0.84184(67) fm, which differs by 5.0 standard deviations from the CODATA value of 0.8768(69) fm. Our result implies that either the Rydberg constant has to be shifted by -110 kHz/c (4.9 standard deviations), or the calculations of the QED effects in atomic hydrogen or muonic hydrogen atoms are insufficient.

SELECTION OF CITATIONS
SEARCH DETAIL
...