Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Heart Rhythm ; 18(10): 1772-1779, 2021 10.
Article in English | MEDLINE | ID: mdl-34182170

ABSTRACT

BACKGROUND: The safety and efficacy parameters for bipolar radiofrequency (RF) ablation are not well defined. OBJECTIVE: The purpose of this study was to investigate the safe range of power, utility of transmyocardial bipolar electrogram (EGM) amplitude, and circuit impedance in ablation monitoring. METHODS: Sixteen beating ex vivo human and swine hearts were studied in a Langendorff setup. Ninety-two bipolar ablations using two 4-mm irrigated catheters were performed at settings of 20-50 W, 60 seconds, and 30 mL/min irrigation in the left ventricle. RESULTS: For low-power ablations (20 and 30 W), transmurality was observed in 29 of 38 (76%) and 10 of 28 (36%) ablations for tissue thickness ≤17 mm and >17 mm, respectively. For high-power ablations (40 and 50 W), transmurality was observed in 5 of 7 (71%) and 7 of 19 (37%) ablations for tissue thickness ≤17 mm and >17 mm, respectively. Steam pop occurrence for low- and high-power ablations was 11 of 66 (16%) and 16 of 26 (62%), respectively (P = .0001), respectively. Lesion depth (limited by transmurality) was 12.0 ± 5.7 mm and 12.3 ± 5.8 mm, respectively (P = 1). Transmyocardial EGM amplitude decrement >60% strongly predicted transmurality (area under the curve [AUC] 0.8), and circuit impedance decrement >26% predicted steam pops (AUC 0.75). Half-normal saline did not affect transmurality or incidence of steam pops compared to normal saline irrigation. CONCLUSION: Bipolar RF ablation at power of 20-30 W provided an ideal balance of safety and efficacy, whereas power ≥40 W should be used with caution due to the high incidence of steam pops. Lesion transmurality monitoring and steam pop avoidance were best achieved using transmyocardial bipolar EGM voltage and circuit impedance, respectively.


Subject(s)
Arrhythmias, Cardiac/surgery , Heart Rate/physiology , Heart Ventricles/physiopathology , Monitoring, Physiologic/methods , Radiofrequency Ablation/methods , Animals , Arrhythmias, Cardiac/physiopathology , Disease Models, Animal , Humans , Swine
2.
Heart Rhythm ; 18(5): 813-821, 2021 05.
Article in English | MEDLINE | ID: mdl-33418128

ABSTRACT

BACKGROUND: Characterizing wavefront generation and impulse conduction in left bundle (LB) has implications for left bundle branch area pacing (LBBAP). OBJECTIVES: The purpose of this study was to describe the pacing characteristics of LB and to study the role of pacing pulse width (PW) in overcoming left bundle branch block. METHODS: Twenty fresh ovine heart slabs containing well-developed and easily identifiable tissues of the conduction system were used for the study. LB stimulation, activation, and propagation were studied under baseline conditions, simulated conduction slowing, conduction block, and fascicular block. RESULTS: The maximum radius of the LB early activation increased up to 13.4 ± 2.4 mm from the pacing stimulus, and the time from stimulus to evoked potential shortened when pacing PW was increased from 0.13 to 2 ms at baseline. Conduction slowing and block induced by cooling could be resolved by increasing pacing PW from 0.25 to 1.5 ms over a distance of 10 ± 1.5 mm from the pacing stimulus. The LB strength-duration (SD) curve was shifted to the left of the myocardial SD curve. CONCLUSION: Increasing PW resolved conduction slowing and block and bypassed the experimental model of fascicular block in LB. Precise positioning of the LB lead in left ventricular subendocardium is not mandatory in LBBAP, as the SD curve of LB was shifted to the left of the myocardium SD curve and could be captured from a distance by optimizing PW.


Subject(s)
Bundle of His/physiopathology , Cardiac Conduction System Disease/physiopathology , Cardiac Pacing, Artificial/methods , Electrocardiography , Heart Rate/physiology , Animals , Cardiac Conduction System Disease/therapy , Disease Models, Animal , Sheep
SELECTION OF CITATIONS
SEARCH DETAIL
...