Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Rep ; 14(1): 18299, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39112730

ABSTRACT

Photocatalysis is essential for wastewater cleanup and clean energy, and in this current study, we have synthesized nanomaterials (iron oxide-based) for photocatalytic pollution degradation and hydrogen production. The performance of aluminium oxide/ferric oxide (Al2O3/Fe2O3), samarium oxide/ferric oxide (Sm2O3/Fe2O3) and yttrium oxide/ferric oxide (Y2O3/Fe2O3) were compared for the production of hydrogen (H2) and degradation of dye under natural sunlight. Various characterisation equipment was used to characterize these photocatalysts' structure, morphology, elemental content, binding energy and band gap. The hydrogen recovery efficiency of iron oxide-based photocatalysts from sulphide-containing wastewater is assessed. Y2O3/Fe2O3 has shown the highest hydrogen production of 340 mL/h. The influence of operating factors such as sulphide ion concentration, catalyst quantity, and photocatalyst photolytic solution volume on hydrogen production is studied. The optimal values were 0.25 M, 0.2 g/L, and 1L, respectively. The developed photocatalyst passed multiple cycles of stability testing. Fe2O3 has shown the highest Rhodamine B (RhB) dye degradation efficiency of 94% under visible light.

2.
Chemosphere ; 309(Pt 1): 136667, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36202369

ABSTRACT

In this paper, an environmentally benign silica-supported perchloric acid (HClO4-SiO2) catalyzed green FCDR strategy has been developed for the synthesis of (Z)-THIs (6) with high stereospecificity via an intramolecular hydrogen bond (IHB) directed approach, involving the reaction of methyl ketones (1), N-bromosuccinimide (NBS) (2), isatins (4) and thiosemicarbazide (5) in ethanol at reflux temperature for 45-60 min in one-pot. The reaction proceeds through the construction of C-Br (α-bromination), C-S & C-N (heterocyclization), and CN (condensation) bonds in one pot. The absolute structure of the compound (Z)-3-(2-(4-(4-bromophenyl)thiazol-2-yl)hydrazono)indolin-2-one (6e) has been confirmed by single-crystal XRD analysis. Further, the role of IHB on Z-configuration of the synthesized (Z)-THIs is proved by single-crystal XRD and 1H NMR studies. Wide substrate scope, good functional group tolerance, scalability, improved safety since the method circumvents the use of highly lachrymatric α-bromoketones as starting materials, high product yields (up to 98%), short reaction times, reusable solid Brønsted acid catalyst (HClO4-SiO2), and products that do not require column chromatography purification are all attractive features of this FCDR strategy. Electrochemical properties of THIs (6) are examined by cyclic voltammetry. The HOMO and LUMO energy level of THIs, 6a, 6c, 6d, 6j, 6o-6v, 6y, and 6aa are comparable with the reported ambipolar materials, and the HOMO levels of other THIs, 6b, 6e-6i, 6n, 6w, 6x, 6z and 6 ab-6ae are similar with the most commonly used hole transporting materials (HTMs).


Subject(s)
Bromosuccinimide , Silicon Dioxide , Silicon Dioxide/chemistry , Catalysis , Ethanol , Ketones
SELECTION OF CITATIONS
SEARCH DETAIL