Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Aphasiology ; 37(12): 1964-1980, 2023.
Article in English | MEDLINE | ID: mdl-38155815

ABSTRACT

Background: Recent work has highlighted the utility of the Boston Naming Test and Hopkins Action Naming Assessment (HANA) for distinguishing between semantic (svPPA), logopenic (lvPPA) and non-fluent agrammatic (nfavPPA) variants of primary progressive aphasia (PPA). Aims: To determine whether item level differences between variants on when naming verbs on the HANA were able to be accounted for using common variables of lexical interest: word frequency, semantic density, concreteness, or valency. We also examined three specific hypotheses: (1) svPPA and lvPPA may result in increased difficulty with decreased semantic density compared to nfavPPA; (2) svPPA may result in increased difficulty with decreased concreteness; and (3) nfavPPA may result in increased difficulty with high syntactic valency. Methods & Procedures: 268 patients with PPA were evaluated using the HANA. A hierarchical Bayesian regression approach was adopted to account for effects of repeated measurement within participants and items. Outcomes & Results: The main effects of variant and verb trait were significant in all models, as was the interaction for frequency, semantic density, and valency. Increasing frequency, semantic density, and concreteness led to better performance, while increasing valency led to poorer performance. Low semantic density contributed to greater difficulty in svPPA and lvPPA, but low concreteness did not uniquely impact verb naming in svPPA. Those with nfavPPA had no particular difficulty as a result of valency. Conclusions: Prior studies have identified the independent effects of frequency and semantic density on verb naming in PPA, which were confirmed by our analyses, and the best predictions of the data were achieved by combining these dimensions. This investigation complements our previous work highlighting the value of the HANA for efficiently demonstrating verb performance in PPA.

2.
Hear Res ; 437: 108856, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37531847

ABSTRACT

The relative contributions of superior temporal vs. inferior frontal and parietal networks to recognition of speech in a background of competing speech remain unclear, although the contributions themselves are well established. Here, we use fMRI with spectrotemporal modulation transfer function (ST-MTF) modeling to examine the speech information represented in temporal vs. frontoparietal networks for two speech recognition tasks with and without a competing talker. Specifically, 31 listeners completed two versions of a three-alternative forced choice competing speech task: "Unison" and "Competing", in which a female (target) and a male (competing) talker uttered identical or different phrases, respectively. Spectrotemporal modulation filtering (i.e., acoustic distortion) was applied to the two-talker mixtures and ST-MTF models were generated to predict brain activation from differences in spectrotemporal-modulation distortion on each trial. Three cortical networks were identified based on differential patterns of ST-MTF predictions and the resultant ST-MTF weights across conditions (Unison, Competing): a bilateral superior temporal (S-T) network, a frontoparietal (F-P) network, and a network distributed across cortical midline regions and the angular gyrus (M-AG). The S-T network and the M-AG network responded primarily to spectrotemporal cues associated with speech intelligibility, regardless of condition, but the S-T network responded to a greater range of temporal modulations suggesting a more acoustically driven response. The F-P network responded to the absence of intelligibility-related cues in both conditions, but also to the absence (presence) of target-talker (competing-talker) vocal pitch in the Competing condition, suggesting a generalized response to signal degradation. Task performance was best predicted by activation in the S-T and F-P networks, but in opposite directions (S-T: more activation = better performance; F-P: vice versa). Moreover, S-T network predictions were entirely ST-MTF mediated while F-P network predictions were ST-MTF mediated only in the Unison condition, suggesting an influence from non-acoustic sources (e.g., informational masking) in the Competing condition. Activation in the M-AG network was weakly positively correlated with performance and this relation was entirely superseded by those in the S-T and F-P networks. Regarding contributions to speech recognition, we conclude: (a) superior temporal regions play a bottom-up, perceptual role that is not qualitatively dependent on the presence of competing speech; (b) frontoparietal regions play a top-down role that is modulated by competing speech and scales with listening effort; and (c) performance ultimately relies on dynamic interactions between these networks, with ancillary contributions from networks not involved in speech processing per se (e.g., the M-AG network).


Subject(s)
Speech Perception , Speech , Male , Humans , Female , Speech Perception/physiology , Cognition , Cues , Acoustics , Speech Intelligibility , Perceptual Masking/physiology
3.
J Cogn Neurosci ; 34(11): 2189-2214, 2022 10 01.
Article in English | MEDLINE | ID: mdl-36007073

ABSTRACT

It has long been known that listening to speech activates inferior frontal (pre-)motor regions in addition to a more dorsal premotor site (dPM). Recent work shows that dPM, located adjacent to laryngeal motor cortex, responds to low-level acoustic speech cues including vocal pitch, and the speech envelope, in addition to higher-level cues such as phoneme categories. An emerging hypothesis is that dPM is part of a general auditory-guided laryngeal control circuit that plays a role in producing speech and other voluntary auditory-vocal behaviors. We recently reported a study in which dPM responded to vocal pitch during a degraded speech recognition task, but only when speech was rated as unintelligible; dPM was more robustly modulated by the categorical difference between intelligible and unintelligible speech. Contrary to the general auditory-vocal hypothesis, this suggests intelligible speech is the primary driver of dPM. However, the same pattern of results was observed in pitch-sensitive auditory cortex. Crucially, vocal pitch was not relevant to the intelligibility judgment task, which may have facilitated processing of phonetic information at the expense of vocal pitch cues. The present fMRI study (n = 25) tests the hypothesis that, for a multitalker task that emphasizes pitch for talker segregation, left dPM and pitch-sensitive auditory regions will respond to vocal pitch regardless of overall speech intelligibility. This would suggest that pitch processing is indeed a primary concern of this circuit, apparent during perception only when the task demands it. Spectrotemporal modulation distortion was used to independently modulate vocal pitch and phonetic content in two-talker (male/female) utterances across two conditions (Competing, Unison), only one of which required pitch-based segregation (Competing). A Bayesian hierarchical drift-diffusion model was used to predict speech recognition performance from patterns of spectrotemporal distortion imposed on each trial. The model's drift rate parameter, a d'-like measure of performance, was strongly associated with vocal pitch for Competing but not Unison. Using a second Bayesian hierarchical model, we identified regions where behaviorally relevant acoustic features were related to fMRI activation in dPM. We regressed the hierarchical drift-diffusion model's posterior predictions of trial-wise drift rate, reflecting the relative presence or absence of behaviorally relevant acoustic features from trial to trial, against trial-wise activation amplitude. A significant positive association with overall drift rate, reflecting vocal pitch and phonetic cues related to overall intelligibility, was observed in left dPM and bilateral auditory cortex in both conditions. A significant positive association with "pitch-restricted" drift rate, reflecting only the relative presence or absence of behaviorally relevant pitch cues, regardless of the presence or absence of phonetic content (intelligibility), was observed in left dPM, but only in the Competing condition. Interestingly, the same effect was observed in bilateral auditory cortex but in both conditions. A post hoc mediation analysis ruled out the possibility that decision load was responsible for the observed pitch effects. These findings suggest that processing of vocal pitch is a primary concern of the auditory-cortex-dPM circuit, although during perception core pitch, processing is carried out by auditory cortex with a potential modulatory influence from dPM.


Subject(s)
Auditory Cortex , Motor Cortex , Speech Perception , Acoustic Stimulation/methods , Auditory Cortex/diagnostic imaging , Auditory Cortex/physiology , Bayes Theorem , Female , Humans , Male , Pitch Perception/physiology , Speech/physiology , Speech Perception/physiology
4.
J Acoust Soc Am ; 151(5): 3116, 2022 05.
Article in English | MEDLINE | ID: mdl-35649891

ABSTRACT

Acoustics research involving human participants typically takes place in specialized laboratory settings. Listening studies, for example, may present controlled sounds using calibrated transducers in sound-attenuating or anechoic chambers. In contrast, remote testing takes place outside of the laboratory in everyday settings (e.g., participants' homes). Remote testing could provide greater access to participants, larger sample sizes, and opportunities to characterize performance in typical listening environments at the cost of reduced control of environmental conditions, less precise calibration, and inconsistency in attentional state and/or response behaviors from relatively smaller sample sizes and unintuitive experimental tasks. The Acoustical Society of America Technical Committee on Psychological and Physiological Acoustics launched the Task Force on Remote Testing (https://tcppasa.org/remotetesting/) in May 2020 with goals of surveying approaches and platforms available to support remote testing and identifying challenges and considerations for prospective investigators. The results of this task force survey were made available online in the form of a set of Wiki pages and summarized in this report. This report outlines the state-of-the-art of remote testing in auditory-related research as of August 2021, which is based on the Wiki and a literature search of papers published in this area since 2020, and provides three case studies to demonstrate feasibility during practice.


Subject(s)
Acoustics , Auditory Perception , Attention/physiology , Humans , Prospective Studies , Sound
5.
Hear Res ; 408: 108307, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34311190

ABSTRACT

We recently developed a method to estimate speech-driven spectrotemporal receptive fields (STRFs) using fMRI. The method uses spectrotemporal modulation filtering, a form of acoustic distortion that renders speech sometimes intelligible and sometimes unintelligible. Using this method, we found significant STRF responses only in classic auditory regions throughout the superior temporal lobes. However, our analysis was not optimized to detect small clusters of STRFs as might be expected in non-auditory regions. Here, we re-analyze our data using a more sensitive multivariate statistical test for cross-subject alignment of STRFs, and we identify STRF responses in non-auditory regions including the left dorsal premotor cortex (dPM), left inferior frontal gyrus (IFG), and bilateral calcarine sulcus (calcS). All three regions responded more to intelligible than unintelligible speech, but left dPM and calcS responded significantly to vocal pitch and demonstrated strong functional connectivity with early auditory regions. Left dPM's STRF generated the best predictions of activation on trials rated as unintelligible by listeners, a hallmark auditory profile. IFG, on the other hand, responded almost exclusively to intelligible speech and was functionally connected with classic speech-language regions in the superior temporal sulcus and middle temporal gyrus. IFG's STRF was also (weakly) able to predict activation on unintelligible trials, suggesting the presence of a partial 'acoustic trace' in the region. We conclude that left dPM is part of the human dorsal laryngeal motor cortex, a region previously shown to be capable of operating in an 'auditory mode' to encode vocal pitch. Further, given previous observations that IFG is involved in syntactic working memory and/or processing of linear order, we conclude that IFG is part of a higher-order speech circuit that exerts a top-down influence on processing of speech acoustics. Finally, because calcS is modulated by emotion, we speculate that changes in the quality of vocal pitch may have contributed to its response.


Subject(s)
Auditory Cortex , Speech Perception , Acoustic Stimulation , Auditory Cortex/diagnostic imaging , Brain Mapping , Humans , Magnetic Resonance Imaging , Speech
6.
J Speech Lang Hear Res ; 63(7): 2141-2161, 2020 07 20.
Article in English | MEDLINE | ID: mdl-32603618

ABSTRACT

Purpose Age-related declines in auditory temporal processing and cognition make older listeners vulnerable to interference from competing speech. This vulnerability may be increased in older listeners with sensorineural hearing loss due to additional effects of spectral distortion and accelerated cognitive decline. The goal of this study was to uncover differences between older hearing-impaired (OHI) listeners and older normal-hearing (ONH) listeners in the perceptual encoding of competing speech signals. Method Age-matched groups of 10 OHI and 10 ONH listeners performed the coordinate response measure task with a synthetic female target talker and a male competing talker at a target-to-masker ratio of +3 dB. Individualized gain was provided to OHI listeners. Each listener completed 50 baseline and 800 "bubbles" trials in which randomly selected segments of the speech modulation power spectrum (MPS) were retained on each trial while the remainder was filtered out. Average performance was fixed at 50% correct by adapting the number of segments retained. Multinomial regression was used to estimate weights showing the regions of the MPS associated with performance (a "classification image" or CImg). Results The CImg weights were significantly different between the groups in two MPS regions: a region encoding the shared phonetic content of the two talkers and a region encoding the competing (male) talker's voice. The OHI listeners demonstrated poorer encoding of the phonetic content and increased vulnerability to interference from the competing talker. Individual differences in CImg weights explained over 75% of the variance in baseline performance in the OHI listeners, whereas differences in high-frequency pure-tone thresholds explained only 10%. Conclusion Suprathreshold deficits in the encoding of low- to mid-frequency (~5-10 Hz) temporal modulations-which may reflect poorer "dip listening"-and auditory grouping at a perceptual and/or cognitive level are responsible for the relatively poor performance of OHI versus ONH listeners on a different-gender competing speech task. Supplemental Material https://doi.org/10.23641/asha.12568472.


Subject(s)
Hearing Loss, Sensorineural , Hearing Loss , Speech Perception , Aged , Auditory Threshold , Female , Hearing , Hearing Tests , Humans , Male , Perceptual Masking
7.
J Acoust Soc Am ; 147(5): 3712, 2020 05.
Article in English | MEDLINE | ID: mdl-32486805

ABSTRACT

The relative importance of individual frequency regions for speech intelligibility has been firmly established for broadband auditory-only (AO) conditions. Yet, speech communication often takes place face-to-face. This study tested the hypothesis that under auditory-visual (AV) conditions, where visual information is redundant with high-frequency auditory cues, lower frequency regions will increase in relative importance compared to AO conditions. Frequency band-importance functions for consonants were measured for eight hearing-impaired and four normal-hearing listeners. Speech was filtered into four 1/3-octave bands each separated by an octave to minimize energetic masking. On each trial, the signal-to-noise ratio (SNR) in each band was selected randomly from a 10-dB range. AO and AV band-importance functions were estimated using three logistic-regression analyses: a primary model relating performance to the four independent SNRs; a control model that also included band-interaction terms; and a different set of four control models, each examining one band at a time. For both listener groups, the relative importance of the low-frequency bands increased under AV conditions, consistent with earlier studies using isolated speech bands. All three analyses showed similar results, indicating the absence of cross-band interactions. These results suggest that accurate prediction of AV speech intelligibility may require different frequency-importance functions than for AO conditions.


Subject(s)
Speech Intelligibility , Speech Perception , Auditory Threshold , Cues , Hearing , Recognition, Psychology
8.
Psychon Bull Rev ; 26(4): 1354-1366, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30945170

ABSTRACT

Recent evidence suggests that the motor system may have a facilitatory role in speech perception during noisy listening conditions. Studies clearly show an association between activity in auditory and motor speech systems, but also hint at a causal role for the motor system in noisy speech perception. However, in the most compelling "causal" studies performance was only measured at a single signal-to-noise ratio (SNR). If listening conditions must be noisy to invoke causal motor involvement, then effects will be contingent on the SNR at which they are tested. We used articulatory suppression to disrupt motor-speech areas while measuring phonemic identification across a range of SNRs. As controls, we also measured phoneme identification during passive listening, mandible gesturing, and foot-tapping conditions. Two-parameter (threshold, slope) psychometric functions were fit to the data in each condition. Our findings indicate: (1) no effect of experimental task on psychometric function slopes; (2) a small effect of articulatory suppression, in particular, on psychometric function thresholds. The size of the latter effect was 1 dB (~5% correct) on average, suggesting, at best, a minor modulatory role of the speech motor system in perception.


Subject(s)
Motor Cortex/physiology , Speech Perception/physiology , Adult , Female , Humans , Male , Noise , Psychometrics , Signal-To-Noise Ratio
9.
J Speech Lang Hear Res ; 62(4): 1051-1067, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30986140

ABSTRACT

Purpose Age-related sensorineural hearing loss can dramatically affect speech recognition performance due to reduced audibility and suprathreshold distortion of spectrotemporal information. Normal aging produces changes within the central auditory system that impose further distortions. The goal of this study was to characterize the effects of aging and hearing loss on perceptual representations of speech. Method We asked whether speech intelligibility is supported by different patterns of spectrotemporal modulations (STMs) in older listeners compared to young normal-hearing listeners. We recruited 3 groups of participants: 20 older hearing-impaired (OHI) listeners, 19 age-matched normal-hearing listeners, and 10 young normal-hearing (YNH) listeners. Listeners performed a speech recognition task in which randomly selected regions of the speech STM spectrum were revealed from trial to trial. The overall amount of STM information was varied using an up-down staircase to hold performance at 50% correct. Ordinal regression was used to estimate weights showing which regions of the STM spectrum were associated with good performance (a "classification image" or CImg). Results The results indicated that (a) large-scale CImg patterns did not differ between the 3 groups; (b) weights in a small region of the CImg decreased systematically as hearing loss increased; (c) CImgs were also nonsystematically distorted in OHI listeners, and the magnitude of this distortion predicted speech recognition performance even after accounting for audibility; and (d) YNH listeners performed better overall than the older groups. Conclusion We conclude that OHI/older normal-hearing listeners rely on the same speech STMs as YNH listeners but encode this information less efficiently. Supplemental Material https://doi.org/10.23641/asha.7859981.


Subject(s)
Age Factors , Hearing Loss, Sensorineural/psychology , Hearing/physiology , Speech Intelligibility/physiology , Speech Perception/physiology , Adolescent , Adult , Aged , Audiometry, Pure-Tone , Auditory Threshold , Case-Control Studies , Female , Humans , Male , Middle Aged , Sound Spectrography , Young Adult
10.
Neuroimage ; 186: 647-666, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30500424

ABSTRACT

Existing data indicate that cortical speech processing is hierarchically organized. Numerous studies have shown that early auditory areas encode fine acoustic details while later areas encode abstracted speech patterns. However, it remains unclear precisely what speech information is encoded across these hierarchical levels. Estimation of speech-driven spectrotemporal receptive fields (STRFs) provides a means to explore cortical speech processing in terms of acoustic or linguistic information associated with characteristic spectrotemporal patterns. Here, we estimate STRFs from cortical responses to continuous speech in fMRI. Using a novel approach based on filtering randomly-selected spectrotemporal modulations (STMs) from aurally-presented sentences, STRFs were estimated for a group of listeners and categorized using a data-driven clustering algorithm. 'Behavioral STRFs' highlighting STMs crucial for speech recognition were derived from intelligibility judgments. Clustering revealed that STRFs in the supratemporal plane represented a broad range of STMs, while STRFs in the lateral temporal lobe represented circumscribed STM patterns important to intelligibility. Detailed analysis recovered a bilateral organization with posterior-lateral regions preferentially processing STMs associated with phonological information and anterior-lateral regions preferentially processing STMs associated with word- and phrase-level information. Regions in lateral Heschl's gyrus preferentially processed STMs associated with vocalic information (pitch).


Subject(s)
Auditory Cortex/physiology , Brain Mapping/methods , Language , Speech Intelligibility/physiology , Speech Perception/physiology , Adult , Auditory Cortex/diagnostic imaging , Female , Humans , Magnetic Resonance Imaging , Male , Young Adult
11.
Front Hum Neurosci ; 11: 174, 2017.
Article in English | MEDLINE | ID: mdl-28439236

ABSTRACT

The human superior temporal sulcus (STS) is responsive to visual and auditory information, including sounds and facial cues during speech recognition. We investigated the functional organization of STS with respect to modality-specific and multimodal speech representations. Twenty younger adult participants were instructed to perform an oddball detection task and were presented with auditory, visual, and audiovisual speech stimuli, as well as auditory and visual nonspeech control stimuli in a block fMRI design. Consistent with a hypothesized anterior-posterior processing gradient in STS, auditory, visual and audiovisual stimuli produced the largest BOLD effects in anterior, posterior and middle STS (mSTS), respectively, based on whole-brain, linear mixed effects and principal component analyses. Notably, the mSTS exhibited preferential responses to multisensory stimulation, as well as speech compared to nonspeech. Within the mid-posterior and mSTS regions, response preferences changed gradually from visual, to multisensory, to auditory moving posterior to anterior. Post hoc analysis of visual regions in the posterior STS revealed that a single subregion bordering the mSTS was insensitive to differences in low-level motion kinematics yet distinguished between visual speech and nonspeech based on multi-voxel activation patterns. These results suggest that auditory and visual speech representations are elaborated gradually within anterior and posterior processing streams, respectively, and may be integrated within the mSTS, which is sensitive to more abstract speech information within and across presentation modalities. The spatial organization of STS is consistent with processing streams that are hypothesized to synthesize perceptual speech representations from sensory signals that provide convergent information from visual and auditory modalities.

12.
J Acoust Soc Am ; 140(2): 1072, 2016 08.
Article in English | MEDLINE | ID: mdl-27586738

ABSTRACT

Speech intelligibility depends on the integrity of spectrotemporal patterns in the signal. The current study is concerned with the speech modulation power spectrum (MPS), which is a two-dimensional representation of energy at different combinations of temporal and spectral (i.e., spectrotemporal) modulation rates. A psychophysical procedure was developed to identify the regions of the MPS that contribute to successful reception of auditory sentences. The procedure, based on the two-dimensional image classification technique known as "bubbles" (Gosselin and Schyns (2001). Vision Res. 41, 2261-2271), involves filtering (i.e., degrading) the speech signal by removing parts of the MPS at random, and relating filter patterns to observer performance (keywords identified) over a number of trials. The result is a classification image (CImg) or "perceptual map" that emphasizes regions of the MPS essential for speech intelligibility. This procedure was tested using normal-rate and 2×-time-compressed sentences. The results indicated: (a) CImgs could be reliably estimated in individual listeners in relatively few trials, (b) CImgs tracked changes in spectrotemporal modulation energy induced by time compression, though not completely, indicating that "perceptual maps" deviated from physical stimulus energy, and


Subject(s)
Speech Intelligibility/physiology , Adult , Auditory Threshold , Female , Humans , Male , Psychoacoustics , Speech Perception
13.
Atten Percept Psychophys ; 78(2): 583-601, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26669309

ABSTRACT

Recent influential models of audiovisual speech perception suggest that visual speech aids perception by generating predictions about the identity of upcoming speech sounds. These models place stock in the assumption that visual speech leads auditory speech in time. However, it is unclear whether and to what extent temporally-leading visual speech information contributes to perception. Previous studies exploring audiovisual-speech timing have relied upon psychophysical procedures that require artificial manipulation of cross-modal alignment or stimulus duration. We introduce a classification procedure that tracks perceptually relevant visual speech information in time without requiring such manipulations. Participants were shown videos of a McGurk syllable (auditory /apa/ + visual /aka/ = perceptual /ata/) and asked to perform phoneme identification (/apa/ yes-no). The mouth region of the visual stimulus was overlaid with a dynamic transparency mask that obscured visual speech in some frames but not others randomly across trials. Variability in participants' responses (~35 % identification of /apa/ compared to ~5 % in the absence of the masker) served as the basis for classification analysis. The outcome was a high resolution spatiotemporal map of perceptually relevant visual features. We produced these maps for McGurk stimuli at different audiovisual temporal offsets (natural timing, 50-ms visual lead, and 100-ms visual lead). Briefly, temporally-leading (~130 ms) visual information did influence auditory perception. Moreover, several visual features influenced perception of a single speech sound, with the relative influence of each feature depending on both its temporal relation to the auditory signal and its informational content.


Subject(s)
Acoustic Stimulation/methods , Auditory Perception/physiology , Photic Stimulation/methods , Speech Perception/physiology , Statistics as Topic/methods , Visual Perception/physiology , Adult , Female , Humans , Male , Phonetics , Psychophysics , Speech/physiology , Time Factors
14.
Neuroimage ; 126: 196-207, 2016 Feb 01.
Article in English | MEDLINE | ID: mdl-26608242

ABSTRACT

Sensory information is critical for movement control, both for defining the targets of actions and providing feedback during planning or ongoing movements. This holds for speech motor control as well, where both auditory and somatosensory information have been shown to play a key role. Recent clinical research demonstrates that individuals with severe speech production deficits can show a dramatic improvement in fluency during online mimicking of an audiovisual speech signal suggesting the existence of a visuomotor pathway for speech motor control. Here we used fMRI in healthy individuals to identify this new visuomotor circuit for speech production. Participants were asked to perceive and covertly rehearse nonsense syllable sequences presented auditorily, visually, or audiovisually. The motor act of rehearsal, which is prima facie the same whether or not it is cued with a visible talker, produced different patterns of sensorimotor activation when cued by visual or audiovisual speech (relative to auditory speech). In particular, a network of brain regions including the left posterior middle temporal gyrus and several frontoparietal sensorimotor areas activated more strongly during rehearsal cued by a visible talker versus rehearsal cued by auditory speech alone. Some of these brain regions responded exclusively to rehearsal cued by visual or audiovisual speech. This result has significant implications for models of speech motor control, for the treatment of speech output disorders, and for models of the role of speech gesture imitation in development.


Subject(s)
Brain Mapping/methods , Cerebral Cortex/physiology , Nerve Net/physiology , Speech Perception/physiology , Speech/physiology , Visual Perception/physiology , Adult , Cues , Female , Humans , Magnetic Resonance Imaging , Male , Young Adult
15.
PLoS One ; 8(6): e68959, 2013.
Article in English | MEDLINE | ID: mdl-23805332

ABSTRACT

Research on the neural basis of speech-reading implicates a network of auditory language regions involving inferior frontal cortex, premotor cortex and sites along superior temporal cortex. In audiovisual speech studies, neural activity is consistently reported in posterior superior temporal Sulcus (pSTS) and this site has been implicated in multimodal integration. Traditionally, multisensory interactions are considered high-level processing that engages heteromodal association cortices (such as STS). Recent work, however, challenges this notion and suggests that multisensory interactions may occur in low-level unimodal sensory cortices. While previous audiovisual speech studies demonstrate that high-level multisensory interactions occur in pSTS, what remains unclear is how early in the processing hierarchy these multisensory interactions may occur. The goal of the present fMRI experiment is to investigate how visual speech can influence activity in auditory cortex above and beyond its response to auditory speech. In an audiovisual speech experiment, subjects were presented with auditory speech with and without congruent visual input. Holding the auditory stimulus constant across the experiment, we investigated how the addition of visual speech influences activity in auditory cortex. We demonstrate that congruent visual speech increases the activity in auditory cortex.


Subject(s)
Auditory Cortex/diagnostic imaging , Magnetic Resonance Imaging , Speech Perception/physiology , Acoustic Stimulation , Adolescent , Adult , Brain Mapping , Female , Humans , Image Processing, Computer-Assisted , Male , Photic Stimulation , Young Adult
16.
Proc Natl Acad Sci U S A ; 109(50): 20738-43, 2012 Dec 11.
Article in English | MEDLINE | ID: mdl-23188798

ABSTRACT

The functional organization of human auditory cortex has not yet been characterized beyond a rudimentary level of detail. Here, we use functional MRI to measure the microstructure of orthogonal tonotopic and periodotopic gradients forming complete auditory field maps (AFMs) in human core and belt auditory cortex. These AFMs show clear homologies to subfields of auditory cortex identified in nonhuman primates and in human cytoarchitectural studies. In addition, we present measurements of the macrostructural organization of these AFMs into "clover leaf" clusters, consistent with the macrostructural organization seen across human visual cortex. As auditory cortex is at the interface between peripheral hearing and central processes, improved understanding of the organization of this system could open the door to a better understanding of the transformation from auditory spectrotemporal signals to higher-order information such as speech categories.


Subject(s)
Auditory Cortex/physiology , Acoustic Stimulation , Adult , Animals , Auditory Cortex/anatomy & histology , Brain Mapping , Female , Haplorhini/anatomy & histology , Haplorhini/physiology , Humans , Magnetic Resonance Imaging , Male , Psychoacoustics
SELECTION OF CITATIONS
SEARCH DETAIL
...