Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Appl Thromb Hemost ; 29: 10760296231183427, 2023.
Article in English | MEDLINE | ID: mdl-37322895

ABSTRACT

Even though routine screening of the general hospital population is discouraged, medical laboratories may use a "lupus sensitive" activated partial thromboplastin time test (aPTT) with phospholipid concentrations that are susceptible to inhibition by lupus anticoagulant (LA), to screen for the presence of LA. If deemed necessary, follow-up testing according to ISTH guidelines may be performed. However, LA testing is a laborious and time-consuming effort that is often not readily available due to a lack of automation and/or temporary unavailability of experienced staff. In contrast, the aPTT is a fully automated test that is available 24/7 in almost all medical laboratories and is easily interpreted with the use of reference ranges. In addition to clinical signs, the result of an LA sensitive aPTT may thus be used to lower the suspicion of the presence of LA and reduce costly follow-up testing. In this study, we show that a normal LA sensitive aPTT result may be safely used to refrain from LA testing in the absence of strong clinical suspicion.


Subject(s)
Antiphospholipid Syndrome , Lupus Coagulation Inhibitor , Humans , Partial Thromboplastin Time , Blood Coagulation Tests , Reference Values
2.
J Cell Biol ; 219(10)2020 10 05.
Article in English | MEDLINE | ID: mdl-32777015

ABSTRACT

Progression of epithelial cancers predominantly proceeds by collective invasion of cell groups with coordinated cell-cell junctions and multicellular cytoskeletal activity. Collectively invading breast cancer cells express the gap junction protein connexin-43 (Cx43), yet whether Cx43 regulates collective invasion remains unclear. We here show that Cx43 mediates gap-junctional coupling between collectively invading breast cancer cells and, via hemichannels, adenosine nucleotide/nucleoside release into the extracellular space. Using molecular interference and rescue strategies, we identify that Cx43 hemichannel function, but not intercellular communication, induces leader cell activity and collective migration through the engagement of the adenosine receptor 1 (ADORA1) and AKT signaling. Accordingly, pharmacological inhibition of ADORA1 or AKT signaling caused leader cell collapse and halted collective invasion. ADORA1 inhibition further reduced local invasion of orthotopic mammary tumors in vivo, and joint up-regulation of Cx43 and ADORA1 in breast cancer patients correlated with decreased relapse-free survival. This identifies autocrine purinergic signaling, through Cx43 hemichannels, as a critical pathway in leader cell function and collective invasion.


Subject(s)
Breast Neoplasms/genetics , Connexin 43/genetics , Neoplasm Invasiveness/genetics , Receptors, Purinergic P1/genetics , Adenosine Triphosphate/genetics , Breast Neoplasms/pathology , Cell Communication/genetics , Cell Line, Tumor , Epithelial Cells/metabolism , Epithelial Cells/pathology , Female , Gap Junctions/genetics , Gene Expression Regulation, Neoplastic/genetics , Humans , Intercellular Junctions/genetics , Neoplasm Invasiveness/pathology , Proto-Oncogene Proteins c-akt/genetics , Signal Transduction/genetics
3.
Nat Cell Biol ; 22(1): 97-107, 2020 01.
Article in English | MEDLINE | ID: mdl-31907411

ABSTRACT

Diffuse brain infiltration by glioma cells causes detrimental disease progression, but its multicellular coordination is poorly understood. We show here that glioma cells infiltrate the brain collectively as multicellular networks. Contacts between moving glioma cells are adaptive epithelial-like or filamentous junctions stabilized by N-cadherin, ß-catenin and p120-catenin, which undergo kinetic turnover, transmit intercellular calcium transients and mediate directional persistence. Downregulation of p120-catenin compromises cell-cell interaction and communication, disrupts collective networks, and both the cadherin and RhoA binding domains of p120-catenin are required for network formation and migration. Deregulating p120-catenin further prevents diffuse glioma cell infiltration of the mouse brain with marginalized microlesions as the outcome. Transcriptomics analysis has identified p120-catenin as an upstream regulator of neurogenesis and cell cycle pathways and a predictor of poor clinical outcome in glioma patients. Collective glioma networks infiltrating the brain thus depend on adherens junctions dynamics, the targeting of which may offer an unanticipated strategy to halt glioma progression.


Subject(s)
Adherens Junctions/metabolism , Catenins/metabolism , Cell Adhesion/physiology , Glioma/pathology , Animals , Brain/metabolism , Brain/pathology , Cadherins/metabolism , Cell Line, Tumor , Down-Regulation/physiology , Glioma/metabolism , Phosphoproteins/metabolism , Phosphorylation , Delta Catenin
4.
Semin Cancer Biol ; 60: 107-120, 2020 02.
Article in English | MEDLINE | ID: mdl-31369816

ABSTRACT

Cell-cell adhesion by adherens junctions controls proliferation and cell polarization and is crucial to maintain epithelial architecture and homeostasis. Downregulation of two of the main components of adherens junctions, E-cadherin and p120, is an often recurring hallmark of carcinomas, causing loss of polarity and increased proliferation, survival and invasion of epithelial cells. On the other hand, tumor-promoting effects of both E-cadherin and p120 have been reported, substantiated by sustained, or even elevated expression of these molecules in many cancers. In this review, we will discuss how expression regulation by EMT, E-cadherin cleavage or p120 isoform expression can contribute to either tumor-supressing or tumor-promoting processes. Furthermore, we will focus on the contradictory functions of E-cadherin and p120 in the different phases of tumor progression, from carcinoma in situ up to the formation of distant metastasis. Finally, we will discuss the possibilities and challenges when using either protein as a biomarker.


Subject(s)
Cadherins/genetics , Catenins/genetics , Neoplasms/etiology , Neoplasms/metabolism , Animals , Apoptosis , Biomarkers, Tumor , Cadherins/metabolism , Catenins/metabolism , Cell Adhesion/genetics , Disease Progression , Disease Susceptibility , Gene Expression Regulation , Humans , Neoplasm Metastasis , Neoplasm Staging , Neoplasms/mortality , Neoplasms/pathology , Neoplastic Cells, Circulating , Prognosis , Signal Transduction , Delta Catenin
5.
Cancers (Basel) ; 11(10)2019 Sep 29.
Article in English | MEDLINE | ID: mdl-31569498

ABSTRACT

Tumor metastasis is the endpoint of tumor progression and depends on the ability of tumor cells to locally invade tissue, transit through the bloodstream and ultimately to colonize secondary organs at distant sites. P120 catenin (P120) has been implicated as an important regulator of metastatic dissemination because of its roles in cell-cell junctional stability, cytoskeletal dynamics, growth and survival. However, conflicting roles for P120 in different tumor models and steps of metastasis have been reported, and the understanding of P120 functions is confounded by the differential expression of P120 isoforms, which differ in N-terminal length, tissue localization and, likely, function. Here, we used in silico exon expression analyses, in vitro invasion assays and both RT-PCR and immunofluorescence of human tumors. We show that alternative exon usage favors expression of short isoform P120-3 in 1098 breast tumors and correlates with poor prognosis. P120-3 is upregulated at the invasive front of breast cancer cells migrating as collective groups in vitro. Furthermore, we demonstrate in histological sections of 54 human breast cancer patients that P120-3 expression is maintained throughout the metastatic cascade, whereas P120-1 is differentially expressed and diminished during invasion and in metastases. These data suggest specific regulation and functions of P120-3 in breast cancer invasion and metastasis.

6.
Sci Rep ; 9(1): 90, 2019 01 14.
Article in English | MEDLINE | ID: mdl-30643202

ABSTRACT

P120 catenin (p120) is a non-redundant master regulatory protein of cadherin-based cell-cell junctions, intracellular signaling, and tissue homeostasis and repair. Alternative splicing can generate p120 isoforms 1 and 3 (p120-1 and p120-3), which are implicated in non-overlapping functions by differential expression regulation and unique interactions in different cell types, with often predominant expression of p120-1 in mesenchymal cells, and p120-3 generally prevalent in epithelial cells. However, the lack of specific p120-3 protein detection has precluded analysis of their relative abundance in tissues. Here, we have developed a p120-3 isoform-specific antibody and analyzed the p120-3 localization relative to p120-1 in human tissues. p120-3 but not p120-1 is highly expressed in cell-cell junctions of simple gastrointestinal epithelia such as colon and stomach, and the acini of salivary glands and the pancreas. Conversely, the basal layer of the epidermis and hair follicles expressed p120-1 with reduced p120-3, whereas most other epithelia co-expressed p120-3 and p120-1, including bronchial epithelia and mammary luminal epithelial cells. These data provide an inventory of tissue-specific p120 isoform expression and suggest a link between p120 isoform expression and epithelial differentiation.


Subject(s)
Catenins/analysis , Epithelium/chemistry , Protein Isoforms/analysis , Transcriptome , Humans , Immunoassay , Intercellular Junctions/chemistry , Delta Catenin
7.
Lung Cancer ; 126: 32-40, 2018 12.
Article in English | MEDLINE | ID: mdl-30527190

ABSTRACT

PURPOSE: Metabolic inhibition might sensitize tumors to irradiation. Here, we examined the effect of lonidamine (several metabolic effects, inhibiting hexokinase amongst others) and/or 968 (glutaminase inhibitor) on tumor cell metabolism, cell growth, cytotoxicity and radiosensitivity in NSCLC cell lines in vitro in relation to histology. MATERIALS AND METHODS: Adeno- (H23, HCC827, H1975) and squamous cell carcinoma (H520, H292, SW900) NSCLC cells were treated with lonidamine and/or 968 for 72 h under physiological levels of glucose (1.5 mM). Cells were irradiated with 0, 4 or 8 Gy. Cell growth of H2B-mCherry transduced cells and cytotoxicity (CellTox™ Green Cytotoxicity Assay) were measured using live cell imaging (IncuCyte). Inhibitory effects on metabolic profiles was determined using the Seahorse XF96 extracellular Flux analyzer. RESULTS: NSCLC cell lines responded differently to glycolysis (lonidamine) and/or glutaminase (968) inhibition, largely corresponding with changes in glycolytic and mitochondrial metabolism upon treatment. Response patterns were not related to histology. 968 was cytotoxic in cell lines with high glutaminase C expression (H1975 and H520), whereas combination treatment was cytotoxic in KRAS mutated cell lines SW900 and H23. H292 and HCC827 were resistant to combination treatment. Treatment with 968 and especially lonidamine resulted in radiosensitization of H292 and HCC827 in terms of decreased relative cell growth and increased cytotoxicity. CONCLUSION: NSCLC is a heterogeneous disease, which is reflected in the response of different cell lines to the treatment (combinations) reported here. Only a part of NSCLC patients may benefit from the combination of radiation therapy and metabolic inhibition, making stratification necessary.


Subject(s)
Enzyme Inhibitors/pharmacology , Glucose/metabolism , Glutamine/metabolism , Indazoles/pharmacology , Radiation Tolerance/drug effects , Apoptosis/drug effects , Apoptosis/radiation effects , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Proliferation/radiation effects , Dose-Response Relationship, Radiation , Glutaminase/antagonists & inhibitors , Glutaminase/metabolism , Glycolysis/drug effects , Glycolysis/radiation effects , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , X-Rays
8.
Article in English | MEDLINE | ID: mdl-28246177

ABSTRACT

Collective cell migration is paramount to morphogenesis and contributes to the pathogenesis of cancer. To migrate directionally and reach their site of destination, migrating cells must distinguish a front and a rear. In addition to polarizing individually, cell-cell interactions in collectively migrating cells give rise to a higher order of polarity, which allows them to move as a supracellular unit. Rather than just conferring adhesion, emerging evidence indicates that cadherin-based adherens junctions intrinsically polarize the cluster and relay mechanical signals to establish both intracellular and supracellular polarity. In this review, we discuss the various functions of adherens junctions in polarity of migrating cohorts.


Subject(s)
Cell Adhesion , Cell Movement , Cell Polarity , Animals , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...