Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
3 Biotech ; 11(6): 291, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34109094

ABSTRACT

A bacterial strain was isolated from an oil-contaminated site and on its' further characterization, exhibited the potential of synthesising metabolites and the ability to degrade crude oil. Its' morphological, biochemical and 16S rRNA analysis suggested that the bacterium belongs to Dietzia maris AURCCBT01. This strain rapidly grew in the medium supplemented with n-alkanes C14, C18, C20, C28 and C32 utilizing them as a sole carbon source and produced a maximum canthaxanthin pigment of 971.37 µg/L in the n-C14 supplemented medium and produced the lowest pigment yield of 389.48 µg/L in the n-C-32 supplemented medium. Moreover, the strain effectively degraded 91.87% of crude oil in 7 days. The emulsification activity of the strain was 25% with the highest cell surface hydrophobicity (70.26%) and it showed a decrease in surface tension, indicating that the biosurfactant production lowers the surface tension. This is the first report on the characterization of the strain, Dietzia maris AURCCBT01 and its' novelty of alkane degradation and simultaneous production of canthaxanthin pigment. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-021-02807-7.

2.
J Fungi (Basel) ; 6(2)2020 May 20.
Article in English | MEDLINE | ID: mdl-32443916

ABSTRACT

Synthetic pigments/non-renewable coloring sources used normally in the textile industry release toxic substances into the environment, causing perilous ecological challenges. To be safer from such challenges of synthetic colorants, academia and industries have explored the use of natural colorants such as microbial pigments. Such explorations have created a fervent interest among textile stakeholders to undertake the dyeing of textile fabrics, especially with fungal pigments. The biodegradable and sustainable production of natural colorants from fungal sources stand as being comparatively advantageous to synthetic dyes. The prospective scope of fungal pigments has emerged in the opening of many new avenues in textile colorants for wide ranging applications. Applying the biotechnological processes, fungal pigments like carotenoids, melanins, flavins, phenazines, quinones, monascins, violacein, indigo, etc. could be extracted on an industrial scale. This review appraises the studies and applications of various fungal pigments in dyeing textile fabrics and is furthermore shedding light on the importance of toxicity testing, genetic manipulations of fungal pigments, and their future perspectives under biotechnological approaches.

3.
Microorganisms ; 8(4)2020 Apr 13.
Article in English | MEDLINE | ID: mdl-32295096

ABSTRACT

This study is aimed to determine the distribution, diversity and bioprospecting aspects of marine pigmented bacteria (MPB) isolated from pristine Andaman Islands, India. A total of 180 samples including seawater, sediment, marine plants, invertebrates, and vertebrates were collected and investigated for isolating pigmented bacteria. Results revealed that sediment, invertebrates, and seawater samples were colonized with a greater number of pigmented bacteria pertains to 27.9 × 103 CFU/mL, 24.1 × 103 CFU/mL and 6.7 × 103 CFU/mL respectively. Orange (21.6 × 103 CFU/mL) and red (8.0 × 103 CFU/mL) MPB were predominant than other pigmented bacteria. Fourteen potential MPB were selected based on their intense pigmentation and tested for bioactive nature and food colorant applications. Out of 14, two red pigmented strains BSE6.1 & S2.1 displayed potential multifaceted applications, such as antibacterial, antioxidant, food colorant, and staining properties. Brown pigmented strains CO8 and yellow pigmented strain SQ2.3 have displayed staining properties. Chemical characterization of red pigment using TLC, HP-LC, GC-MS, FT-IR and 1H-NMR analysis revealed prodigiosin as a main chemical constituent. Pure form of prodigiosin compound fractions obtained from both the strains displayed effective antibacterial activity against different human pathogens. MIC and MBC assays revealed that S2.1 requires 300 µg and 150 µg, respectively, and BSE6.1 require 400 µg concentrations of pigment compound for complete inhibition of S. aureus subsp. aureus. On the basis of 16S rRNA sequence analysis, strains S2.1 and BSE6.1 were identified as Zooshikella sp. and Streptomyces sp. and assigned under the GenBank accession numbers: MK680108 and MK951781 respectively.

4.
Microorganisms ; 7(7)2019 Jun 28.
Article in English | MEDLINE | ID: mdl-31261756

ABSTRACT

Microbial oddities such as versatile pigments are gaining more attention in current research due to their widely perceived applications as natural food colorants, textiles, antimicrobial activities, and cytotoxic activities. This indicates that the future generation will depend on microbial pigments over synthetic colorants for sustainable livelihood. Although several reviews have detailed the comprehensive applications of microbial pigments extensively, knowledge on several aspects of pigmented microbes is apparently missing and not properly reviewed anywhere. Thus, this review has been made to provide overall knowledge on biodiversity, distribution, pathogenicity, and ecological and industrial applications of microbial pigments as well as their challenges and future directions for food, industrial, and biomedical applications. Meticulously, this compendious review treatise on the pigments from bacteria, fungi, yeasts, and microalgae includes reports from the 1970s to 2018. A total of 261 pigment compounds produced by about 500 different microbial species are included, and their bioactive nature is described.

5.
Environ Sci Pollut Res Int ; 25(6): 5164-5180, 2018 Feb.
Article in English | MEDLINE | ID: mdl-28361404

ABSTRACT

Violacein, violet pigment produced by Chromobacterium violaceum, has attracted much attention recently due to its pharmacological properties including antibacterial activity. The present study investigated possible antibacterial mode of action of violacein from C. violaceum UTM5 against Staphylococcus aureus and methicillin-resistant S. aureus (MRSA) strains. Violet fraction was obtained by cultivating C. violaceum UTM5 in liquid pineapple waste medium, extracted, and fractionated using ethyl acetate and vacuum liquid chromatography technique. Violacein was quantified as major compound in violet fraction using HPLC analysis. Violet fraction displayed bacteriostatic activity against S. aureus ATCC 29213 and methicillin-resistant S. aureus ATCC 43300 with minimum inhibitory concentration (MIC) of 3.9 µg/mL. Fluorescence dyes for membrane damage and scanning electron microscopic analysis confirmed the inhibitory effect by disruption on membrane integrity, morphological alternations, and rupture of the cell membranes of both strains. Transmission electron microscopic analysis showed membrane damage, mesosome formation, and leakage of intracellular constituents of both bacterial strains. Mode of action of violet fraction on the cell membrane integrity of both strains was shown by release of protein, K+, and extracellular adenosine 5'-triphosphate (ATP) with 110.5 µg/mL, 2.34 µg/mL, and 87.24 ng/µL, respectively, at 48 h of incubation. Violet fraction was toxic to human embryonic kidney (HEK293) and human fetal lung fibroblast (IMR90) cell lines with LC50 value of 0.998 ± 0.058 and 0.387 ± 0.002 µg/mL, respectively. Thus, violet fraction showed a strong antibacterial property by disrupting the membrane integrity of S. aureus and MRSA strains. This is the first report on the possible mode of antibacterial action of violet fraction from C. violaceum UTM5 on S. aureus and MRSA strains.


Subject(s)
Anti-Bacterial Agents/pharmacology , Chromobacterium/chemistry , Indoles/pharmacology , Methicillin-Resistant Staphylococcus aureus/drug effects , Staphylococcus aureus/drug effects , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/toxicity , Cell Line , Cell Membrane/drug effects , Cell Membrane/ultrastructure , Cell Survival/drug effects , HEK293 Cells , Humans , Indoles/isolation & purification , Indoles/toxicity , Methicillin-Resistant Staphylococcus aureus/ultrastructure , Microbial Sensitivity Tests , Microbial Viability/drug effects , Staphylococcus aureus/ultrastructure
6.
Mater Sci Eng C Mater Biol Appl ; 59: 228-234, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26652368

ABSTRACT

In this work, the synthesis of silver nanoparticles from a pigment produced by a recently-discovered bacterium, Chryseobacterium artocarpi CECT 8497, was achieved, followed by an investigation of its anticancer properties. The bacterial pigment was identified as flexirubin following NMR ((1)H NMR and (13)C NMR), UV-Vis, and LC-MS analysis. An aqueous silver nitrate solution was treated with isolated flexirubin to produce silver nanoparticles. The synthesised silver nanoparticles were subsequently characterised by UV-Vis spectroscopy, Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDX), X-Ray Diffraction (XRD), and Fourier Transform Infrared (FTIR) Spectroscopy methodologies. Furthermore, the anticancer effects of synthesised silver nanoparticles in a human breast cancer cell line (MCF-7) were evaluated. The tests showed significant cytotoxicity activity of the silver nanoparticles in the cultured cells, with an IC50 value of 36µgmL(-1). This study demonstrates that silver nanoparticles, synthesised from flexirubin from C. artocarpi CECT 8497, may have potential as a novel chemotherapeutic agent.


Subject(s)
Antineoplastic Agents , Breast Neoplasms/drug therapy , Chryseobacterium/chemistry , Metal Nanoparticles/chemistry , Polyenes/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Breast Neoplasms/metabolism , Female , Humans , MCF-7 Cells
7.
Acta Biochim Pol ; 62(2): 185-90, 2015.
Article in English | MEDLINE | ID: mdl-25979288

ABSTRACT

Flexirubins are the unique type of bacterial pigments produced by the bacteria from the genus Chryseobacterium, which are used in the treatment of chronic skin disease, eczema etc. and may serve as a chemotaxonomic marker. Chryseobacterium artocarpi CECT 8497, an yellowish-orange pigment producing strain was investigated for maximum production of pigment by optimizing medium composition employing response surface methodology (RSM). Culture conditions affecting pigment production were optimized statistically in shake flask experiments. Lactose, l-tryptophan and KH2PO4 were the most significant variables affecting pigment production. Box Behnken design (BBD) and RSM analysis were adopted to investigate the interactions between variables and determine the optimal values for maximum pigment production. Evaluation of the experimental results signified that the optimum conditions for maximum production of pigment (521.64 mg/L) in 50 L bioreactor were lactose 11.25 g/L, l-tryptophan 6 g/L and KH2PO4 650 ppm. Production under optimized conditions increased to 7.23 fold comparing to its production prior to optimization. Results of this study showed that statistical optimization of medium composition and their interaction effects enable short listing of the significant factors influencing maximum pigment production from Chryseobacterium artocarpi CECT 8497. In addition, this is the first report optimizing the process parameters for flexirubin type pigment production from Chryseobacterium artocarpi CECT 8497.


Subject(s)
Chryseobacterium/metabolism , Culture Media/chemistry , Industrial Microbiology/methods , Models, Statistical , Polyenes/metabolism , Batch Cell Culture Techniques , Bioreactors , Chryseobacterium/growth & development , Culture Media/metabolism , Fermentation , Industrial Microbiology/instrumentation , Lactose/metabolism , Reproducibility of Results , Tryptophan/metabolism
8.
Int J Syst Evol Microbiol ; 64(Pt 9): 3153-3159, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24958763

ABSTRACT

A bacterial strain, designated UTM-3(T), isolated from the rhizosphere soil of Artocarpus integer (cempedak) in Malaysia was studied to determine its taxonomic position. Cells were Gram-stain-negative, non-spore-forming rods, devoid of flagella and gliding motility, that formed yellow-pigmented colonies on nutrient agar and contained MK-6 as the predominant menaquinone. Comparative analysis of the 16S rRNA gene sequence of strain UTM-3(T) with those of the most closely related species showed that the strain constituted a distinct phyletic line within the genus Chryseobacterium with the highest sequence similarities to Chryseobacterium lactis NCTC 11390(T), Chryseobacterium viscerum 687B-08(T), Chryseobacterium tructae 1084-08(T), Chryseobacterium arthrosphaerae CC-VM-7(T), Chryseobacterium oncorhynchi 701B-08(T), Chryseobacterium vietnamense GIMN1.005(T), Chryseobacterium bernardetii NCTC 13530(T), Chryseobacterium nakagawai NCTC 13529(T), Chryseobacterium gallinarum LMG 27808(T), Chryseobacterium culicis R4-1A(T), Chryseobacterium flavum CW-E2(T), Chryseobacterium aquifrigidense CW9(T), Chryseobacterium ureilyticum CCUG 52546(T), Chryseobacterium indologenes NBRC 14944(T), Chryseobacterium gleum CCUG 14555(T), Chryseobacterium jejuense JS17-8(T), Chryseobacterium oranimense H8(T) and Chryseobacterium joostei LMG 18212(T). The major whole-cell fatty acids were iso-C15 : 0 and iso-C17 : 1ω9c, followed by summed feature 4 (iso-C15 : 0 2-OH and/or C16 : 1ω7t) and iso-C17 : 0 3-OH, and the polar lipid profile consisted of phosphatidylethanolamine and several unknown lipids. The DNA G+C content strain UTM-3(T) was 34.8 mol%. On the basis of the phenotypic and phylogenetic evidence, it is concluded that the isolate represents a novel species of the genus Chryseobacterium, for which the name Chryseobacterium artocarpi sp. nov. is proposed. The type strain is UTM-3(T) ( = CECT 8497(T) = KCTC 32509(T)).


Subject(s)
Artocarpus/microbiology , Chryseobacterium/classification , Phylogeny , Rhizosphere , Soil Microbiology , Bacterial Typing Techniques , Base Composition , Chryseobacterium/genetics , Chryseobacterium/isolation & purification , DNA, Bacterial/genetics , Fatty Acids/chemistry , Malaysia , Molecular Sequence Data , Nucleic Acid Hybridization , Phosphatidylethanolamines/chemistry , Pigmentation , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Vitamin K 2/analogs & derivatives , Vitamin K 2/chemistry
9.
Pol J Microbiol ; 60(3): 213-21, 2011.
Article in English | MEDLINE | ID: mdl-22184928

ABSTRACT

Marine actinomycetes were isolated from sediment samples collected from Pitchavaram mangrove ecosystem situated along the southeast coast of India. Maximum actinomycete population was noted in rhizosphere region. About 38% of the isolates produced L-asparaginase. One potential strain KUA106 produced higher level of enzyme using tryptone glucose yeast extract medium. Based on the studied phenotypic characteristics, strain KUA106 was identified as Streptomyces parvulus KUA106. The optimization method that combines the Plackett-Burman design, a factorial design and the response surface method, which were used to optimize the medium for the production of L-asparaginase by Streptomycetes parvulus. Four medium factors were screened from eleven medium factors by Plackett-Burman design experiments and subsequent optimization process to find out the optimum values of the selected parameters using central composite design was performed. Asparagine, tryptone, d) extrose and NaCl components were found to be the best medium for the L-asparaginase production. The combined optimization method described here is the effective method for screening medium factors as well as determining their optimum level for the production of L-asparaginase by Streptomycetes parvulus KUAP106.


Subject(s)
Actinobacteria/enzymology , Asparaginase/metabolism , Ecosystem , Geologic Sediments/microbiology , Actinobacteria/isolation & purification
10.
Braz. arch. biol. technol ; 53(6): 1503-1510, Nov.-Dec. 2010. ilus, tab
Article in English | LILACS | ID: lil-572289

ABSTRACT

The potential of the white rot fungus, Coriolus versicolor ML04 to decolorize the widely used textile dye Blue BB was tested by employing statistical optimization. Response surface methodology (RSM) involving a central composite design (CCD) was applied to evaluate the interactive effects of four significant factors in different ranges i.e.; glucose (0.5 - 2.5 g/L), yeast extract (0.4 -1.2 g/L), dye concentration (100 - 500 ppm) and inoculum size (5 - 20 percent v/v) to decolorize the Blue BB. The results demonstrated the effectiveness of the statistical experimental design and the ability of C. versicolor ML04 for maximum dye decolorization (>96 percent) at the optimum conditions of the significant factors.

11.
J Biosci Bioeng ; 109(4): 346-50, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20226375

ABSTRACT

The competence of the living creatures to sense and respond to light is well known. The effect of darkness and different color light quality on biomass, extracellular and intracellular pigment yield of five potent pigment producers Monascus purpureus, Isaria farinosa, Emericella nidulans, Fusarium verticillioides and Penicillium purpurogenum, with different color shades such as red, pink, reddish brown and yellow, were investigated. Incubation in total darkness increased the biomass, extracellular and intracellular pigment production in all the fungi. Extracellular red pigment produced by M. purpureus resulted maximum in darkness 36.75 + or - 2.1 OD and minimum in white unscreened light 5.90 + or - 1.1 OD. Similarly, intracellular red pigment produced by M. purpureus resulted maximum in darkness 18.27 + or - 0.9 OD/g and minimum in yellow light 8.03 + or - 0.6 OD/g of substrate. The maximum biomass production was also noticed in darkness 2.51 g/L and minimum in yellow light 0.5 g/L of dry weight. In contrast, growth of fungi in green and yellow wavelengths resulted in low biomass and pigment yield. It was found that darkness, (red 780-622 nm, blue 492-455 nm) and white light influenced pigment and biomass yield.


Subject(s)
Fungi/growth & development , Fungi/metabolism , Pigments, Biological/biosynthesis , Biotechnology , Color , Culture Media, Serum-Free , Darkness , Emericella/growth & development , Emericella/metabolism , Emericella/radiation effects , Extracellular Space/metabolism , Fungi/radiation effects , Fusarium/growth & development , Fusarium/metabolism , Fusarium/radiation effects , Hypocreales/growth & development , Hypocreales/metabolism , Hypocreales/radiation effects , Intracellular Space/metabolism , Light , Monascus/growth & development , Monascus/metabolism , Monascus/radiation effects , Penicillium/growth & development , Penicillium/metabolism , Penicillium/radiation effects
12.
Pol J Microbiol ; 58(2): 117-24, 2009.
Article in English | MEDLINE | ID: mdl-19824395

ABSTRACT

For production of protease by a new strain, Serratia marcescens SB08, optimization of the fermentation medium and environmental conditions, were carried out by applying factorial design and response surface methodology. The results of factorial design showed that pH, agitation, incubation time and yeast extract were the key factors affecting protease production. The optimal cultural conditions for protease production obtained with response surface methodology were pH 6.0, agitation 100 rpm, incubation time 51.0 h and yeast extract 3.0 g/l. This model was also validated by repeating the experiments under the optimized conditions, which resulted in the maximum protease production of 281.23 U/ml (Predicted response 275.66 U/ml), thus proving the validity of the model. Unexplored Serratia marcescens SB08 strain isolated from enteric gut of sulphur butterfly (Kricogonia lyside) was taken up for this study. This study demonstrates the ability of the new strain, Serratia marcescens SB08, for protease production and also that smaller and less time consuming statistical experimental designs are adequate for the optimization of fermentation processes for maximum protease production.


Subject(s)
Peptide Hydrolases/metabolism , Serratia marcescens/metabolism , Bacterial Proteins/metabolism , Bacteriological Techniques , Culture Media/chemistry , Culture Media/pharmacology , Fermentation , Hydrogen-Ion Concentration , Serratia marcescens/drug effects , Temperature , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...