Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(7): e28379, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38689987

ABSTRACT

In our pursuit of a flexible energy storage solution, we have developed biocompatible (bc)-NG/PVA composite polymers by combining neem tree gum (NG) with polyvinyl alcohol (PVA). This innovative bio-inspired approach harnesses NG's unique properties for both the bio-electrolyte and bio-electrode components. The resulting bc-NG/PVA composites exhibit superior dielectric strength and versatility, surpassing traditional inorganic ceramic dielectrics in advanced electronics and pulsed power systems. Our study investigates the dielectric characteristics, conductivities, electric modulus, and impedance parameters of Pure PVA and NG-doped PVA composites. Adding 5 % NG to PVA significantly boosts its conductivity from 10-8 S cm-1 to 10-4 S cm-1, while the dielectric constant of PVA/5 % NG composite jumps to 104.5 compared to pure PVA. These improvements position the composite films of 5 % NG added PVA as promising materials for diverse applications. The heightened performance of these NG-blended PVA composite materials underscores their potential as a valuable resource for flexible energy storage solutions.

2.
RSC Adv ; 10(31): 18315-18322, 2020 May 10.
Article in English | MEDLINE | ID: mdl-35517221

ABSTRACT

In the present study, a chemical precipitation method is adopted to synthesize bismuth vanadate nanoparticles. The calcination temperature dependent photocatalytic and antibacterial activities of BiVO4 nanoparticles are examined. The structural analysis evidences the monoclinic phase of BiVO4 nanoparticles, where the grain size increases with calcination temperature. Interestingly, BiVO4 nanoparticles calcined at 400 °C exhibit superior photocatalytic behaviour against methylene blue dye (K = 0.02169 min-1) under natural solar irradiation, which exhibits good stability for up to three cycles. The evolution of antibacterial activity studies using a well diffusion assay suggest that the BiVO4 nanoparticles calcined at 400 °C can act as an effective growth inhibitor of pathogenic Gram-negative (P. aeruginosa & A. baumannii) and Gram-positive bacteria (S. aureus).

SELECTION OF CITATIONS
SEARCH DETAIL
...