Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 188
Filter
1.
Radiology ; 311(2): e233136, 2024 May.
Article in English | MEDLINE | ID: mdl-38742971

ABSTRACT

Background MR elastography (MRE) has been shown to have excellent performance for noninvasive liver fibrosis staging. However, there is limited knowledge regarding the precision and test-retest repeatability of stiffness measurement with MRE in the multicenter setting. Purpose To determine the precision and test-retest repeatability of stiffness measurement with MRE across multiple centers using the same phantoms. Materials and Methods In this study, three cylindrical phantoms made of polyvinyl chloride gel mimicking different degrees of liver stiffness in humans (phantoms 1-3: soft, medium, and hard stiffness, respectively) were evaluated. Between January 2021 and January 2022, phantoms were circulated between five different centers and scanned with 10 MRE-equipped clinical 1.5-T and 3-T systems from three major vendors, using two-dimensional (2D) gradient-recalled echo (GRE) imaging and/or 2D spin-echo (SE) echo-planar imaging (EPI). Similar MRE acquisition parameters, hardware, and reconstruction algorithms were used at each center. Mean stiffness was measured by a single observer for each phantom and acquisition on a single section. Stiffness measurement precision and same-session test-retest repeatability were assessed using the coefficient of variation (CV) and the repeatability coefficient (RC), respectively. Results The mean precision represented by the CV was 5.8% (95% CI: 3.8, 7.7) for all phantoms and both sequences combined. For all phantoms, 2D GRE achieved a CV of 4.5% (95% CI: 3.3, 5.7) whereas 2D SE EPI achieved a CV of 7.8% (95% CI: 3.1, 12.6). The mean RC of stiffness measurement was 5.8% (95% CI: 3.7, 7.8) for all phantoms and both sequences combined, 4.9% (95% CI: 2.7, 7.0) for 2D GRE, and 7.0% (95% CI: 2.9, 11.2) for 2D SE EPI (all phantoms). Conclusion MRE had excellent in vitro precision and same-session test-retest repeatability in the multicenter setting when similar imaging protocols, hardware, and reconstruction algorithms were used. © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Tang in this issue.


Subject(s)
Elasticity Imaging Techniques , Phantoms, Imaging , Elasticity Imaging Techniques/methods , Elasticity Imaging Techniques/instrumentation , Reproducibility of Results , Humans , Liver/diagnostic imaging , Magnetic Resonance Imaging/methods , Liver Cirrhosis/diagnostic imaging
3.
Radiology ; 310(3): e231220, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38470236

ABSTRACT

Chronic liver disease is highly prevalent and often leads to fibrosis or cirrhosis and complications such as liver failure and hepatocellular carcinoma. The diagnosis and staging of liver fibrosis is crucial to determine management and mitigate complications. Liver biopsy for histologic assessment has limitations such as sampling bias and high interreader variability that reduce precision, which is particularly challenging in longitudinal monitoring. MR elastography (MRE) is considered the most accurate noninvasive technique for diagnosing and staging liver fibrosis. In MRE, low-frequency vibrations are applied to the abdomen, and the propagation of shear waves through the liver is analyzed to measure liver stiffness, a biomarker for the detection and staging of liver fibrosis. As MRE has become more widely used in clinical care and research, different contexts of use have emerged. This review focuses on the latest developments in the use of MRE for the assessment of liver fibrosis; provides guidance for image acquisition and interpretation; summarizes diagnostic performance, along with thresholds for diagnosis and staging of liver fibrosis; discusses current and emerging clinical applications; and describes the latest technical developments.


Subject(s)
Elasticity Imaging Techniques , Liver Neoplasms , Humans , Abdomen , Liver Cirrhosis/diagnostic imaging , Liver Neoplasms/diagnostic imaging
5.
Radiographics ; 44(3): e230083, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38329901

ABSTRACT

Metabolic syndrome comprises a set of risk factors that include abdominal obesity, impaired glucose tolerance, hypertriglyceridemia, low high-density lipoprotein levels, and high blood pressure, at least three of which must be fulfilled for diagnosis. Metabolic syndrome has been linked to an increased risk of cardiovascular disease and type 2 diabetes mellitus. Multimodality imaging plays an important role in metabolic syndrome, including diagnosis, risk stratification, and assessment of complications. CT and MRI are the primary tools for quantification of excess fat, including subcutaneous and visceral adipose tissue, as well as fat around organs, which are associated with increased cardiovascular risk. PET has been shown to detect signs of insulin resistance and may detect ectopic sites of brown fat. Cardiovascular disease is an important complication of metabolic syndrome, resulting in subclinical or symptomatic coronary artery disease, alterations in cardiac structure and function with potential progression to heart failure, and systemic vascular disease. CT angiography provides comprehensive evaluation of the coronary and systemic arteries, while cardiac MRI assesses cardiac structure, function, myocardial ischemia, and infarction. Liver damage results from a spectrum of nonalcoholic fatty liver disease ranging from steatosis to fibrosis and possible cirrhosis. US, CT, and MRI are useful in assessing steatosis and can be performed to detect and grade hepatic fibrosis, particularly using elastography techniques. Metabolic syndrome also has deleterious effects on the pancreas, kidney, gastrointestinal tract, and ovaries, including increased risk for several malignancies. Metabolic syndrome is associated with cerebral infarcts, best evaluated with MRI, and has been linked with cognitive decline. ©RSNA, 2024 Test Your Knowledge questions for this article are available in the supplemental material. See the invited commentary by Pickhardt in this issue.


Subject(s)
Cardiovascular Diseases , Coronary Artery Disease , Diabetes Mellitus, Type 2 , Insulin Resistance , Metabolic Syndrome , Humans , Metabolic Syndrome/diagnostic imaging , Metabolic Syndrome/complications , Diabetes Mellitus, Type 2/complications , Cardiovascular Diseases/diagnostic imaging , Risk Factors
8.
J Comput Assist Tomogr ; 48(1): 1-11, 2024.
Article in English | MEDLINE | ID: mdl-37574655

ABSTRACT

ABSTRACT: The Fontan procedure is the definitive treatment for patients with single-ventricle physiology. Surgical advances have led to a growing number of patients surviving into adulthood. Fontan-associated liver disease (FALD) encompasses a spectrum of pathologic liver changes that occur secondary to altered physiology including congestion, fibrosis, and the development of liver masses. Assessment of FALD is difficult and relies on using imaging alongside of clinical, laboratory, and pathology information. Ultrasound, computed tomography, and magnetic resonance imaging are capable of demonstrating physiologic and hepatic parenchymal abnormalities commonly seen in FALD. Several novel imaging techniques including magnetic resonance elastography are under study for use as biomarkers for FALD progression. Imaging has a central role in detection and characterization of liver masses as benign or malignant. Benign FNH-like masses are commonly encountered; however, these can display atypical features and be mistaken for hepatocellular carcinoma (HCC). Fontan patients are at elevated risk for HCC, which is a feared complication and has a poor prognosis in this population. While imaging screening for HCC is widely advocated, no consensus has been reached regarding an optimal surveillance regimen.


Subject(s)
Carcinoma, Hepatocellular , Liver Diseases , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/surgery , Liver Diseases/diagnostic imaging , Liver/diagnostic imaging , Ultrasonography , Fibrosis , Liver Cirrhosis
9.
AJR Am J Roentgenol ; 222(1): e2329917, 2024 01.
Article in English | MEDLINE | ID: mdl-37729554

ABSTRACT

Alcohol-associated liver disease (ALD) continues to be a global health concern, responsible for a significant number of deaths worldwide. Although most individuals who consume alcohol do not develop ALD, heavy drinkers and binge drinkers are at increased risk. Unfortunately, ALD is often undetected until it reaches advanced stages, frequently associated with portal hypertension and hepatocellular carcinoma (HCC). ALD is now the leading indication for liver transplant. The incidence of alcohol-associated hepatitis (AH) surged during the COVID-19 pandemic. Early diagnosis of ALD is therefore important in patient management and determination of prognosis, as abstinence can halt disease progression. The spectrum of ALD includes steatosis, steatohepatitis, and cirrhosis, with steatosis the most common manifestation. Diagnostic techniques including ultrasound, CT, and MRI provide useful information for identifying ALD and excluding other causes of liver dysfunction. Heterogeneous steatosis and transient perfusion changes on CT and MRI in the clinical setting of alcohol-use disorder are diagnostic of severe AH. Elastography techniques are useful for assessing fibrosis and monitoring treatment response. These various imaging modalities are also useful in HCC surveillance and diagnosis. This review discusses the imaging modalities currently used in the evaluation of ALD, highlighting their strengths, limitations, and clinical applications.


Subject(s)
Carcinoma, Hepatocellular , Liver Diseases, Alcoholic , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/pathology , Pandemics , Liver Neoplasms/pathology , Liver Diseases, Alcoholic/complications , Liver Diseases, Alcoholic/epidemiology , Liver Diseases, Alcoholic/pathology , Magnetic Resonance Imaging/adverse effects , Liver/pathology
11.
Radiology ; 309(1): e231092, 2023 10.
Article in English | MEDLINE | ID: mdl-37815451

ABSTRACT

Background There is a need for reliable noninvasive methods for diagnosing and monitoring nonalcoholic fatty liver disease (NAFLD). Thus, the multidisciplinary Non-invasive Biomarkers of Metabolic Liver disease (NIMBLE) consortium was formed to identify and advance the regulatory qualification of NAFLD imaging biomarkers. Purpose To determine the different-day same-scanner repeatability coefficient of liver MRI biomarkers in patients with NAFLD at risk for steatohepatitis. Materials and Methods NIMBLE 1.2 is a prospective, observational, single-center short-term cross-sectional study (October 2021 to June 2022) in adults with NAFLD across a spectrum of low, intermediate, and high likelihood of advanced fibrosis as determined according to the fibrosis based on four factors (FIB-4) index. Participants underwent up to seven MRI examinations across two visits less than or equal to 7 days apart. Standardized imaging protocols were implemented with six MRI scanners from three vendors at both 1.5 T and 3 T, with central analysis of the data performed by an independent reading center (University of California, San Diego). Trained analysts, who were blinded to clinical data, measured the MRI proton density fat fraction (PDFF), liver stiffness at MR elastography (MRE), and visceral adipose tissue (VAT) for each participant. Point estimates and CIs were calculated using χ2 distribution and statistical modeling for pooled repeatability measures. Results A total of 17 participants (mean age, 58 years ± 8.5 [SD]; 10 female) were included, of which seven (41.2%), six (35.3%), and four (23.5%) participants had a low, intermediate, or high likelihood of advanced fibrosis, respectively. The different-day same-scanner mean measurements were 13%-14% for PDFF, 6.6 L for VAT, and 3.15 kPa for two-dimensional MRE stiffness. The different-day same-scanner repeatability coefficients were 0.22 L (95% CI: 0.17, 0.29) for VAT, 0.75 kPa (95% CI: 0.6, 0.99) for MRE stiffness, 1.19% (95% CI: 0.96, 1.61) for MRI PDFF using magnitude reconstruction, 1.56% (95% CI: 1.26, 2.07) for MRI PDFF using complex reconstruction, and 19.7% (95% CI: 15.8, 26.2) for three-dimensional MRE shear modulus. Conclusion This preliminary study suggests that thresholds of 1.2%-1.6%, 0.22 L, and 0.75 kPa for MRI PDFF, VAT, and MRE, respectively, should be used to discern measurement error from real change in patients with NAFLD. ClinicalTrials.gov registration no. NCT05081427 © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Kozaka and Matsui in this issue.


Subject(s)
Elasticity Imaging Techniques , Non-alcoholic Fatty Liver Disease , Adult , Female , Humans , Middle Aged , Biomarkers , Cross-Sectional Studies , Elasticity Imaging Techniques/methods , Fibrosis , Liver/diagnostic imaging , Liver/pathology , Magnetic Resonance Imaging/methods , Non-alcoholic Fatty Liver Disease/diagnostic imaging , Non-alcoholic Fatty Liver Disease/pathology , Prospective Studies
12.
Abdom Radiol (NY) ; 48(10): 3162-3173, 2023 10.
Article in English | MEDLINE | ID: mdl-37436452

ABSTRACT

PURPOSE: To determine the diagnostic performance of parenchymal MRI features differentiating CP from controls. METHODS: This prospective study performed abdominal MRI scans at seven institutions, using 1.5 T Siemens and GE scanners, in 50 control and 51 definite CP participants, from February 2019 to May 2021. MRI parameters included the T1-weighted signal intensity ratio of the pancreas (T1 score), arterial-to-venous enhancement ratio (AVR) during venous and delayed phases, pancreas volume, and diameter. We evaluated the diagnostic performance of these parameters individually and two semi-quantitative MRI scores derived using logistic regression: SQ-MRI Model A (T1 score, AVR venous, and tail diameter) and Model B (T1 score, AVR venous, and volume). RESULTS: When compared to controls, CP participants showed a significantly lower mean T1 score (1.11 vs. 1.29), AVR venous (0.86 vs. 1.45), AVR delayed (1.07 vs. 1.57), volume (54.97 vs. 80.00 ml), and diameter of the head (2.05 vs. 2.39 cm), body (2.25 vs. 2.58 cm), and tail (1.98 vs. 2.51 cm) (p < 0.05 for all). AUCs for these individual MR parameters ranged from 0.66 to 0.79, while AUCs for the SQ-MRI scores were 0.82 and 0.81 for Model A (T1 score, AVR venous, and tail diameter) and Model B (T1 score, AVR venous, and volume), respectively. After propensity-matching adjustments for covariates, AUCs for Models A and B of the SQ-MRI scores increased to 0.92 and 0.93, respectively. CONCLUSION: Semi-quantitative parameters of the pancreatic parenchyma, including T1 score, enhancement ratio, pancreas volume, diameter and multi-parametric models combining these parameters are helpful in diagnosis of CP. Longitudinal analyses including more extensive population are warranted to develop new diagnostic criteria for CP.


Subject(s)
Pancreas , Pancreatitis, Chronic , Humans , Prospective Studies , Magnetic Resonance Imaging/methods
13.
Eur Radiol ; 33(12): 9022-9037, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37470827

ABSTRACT

OBJECTIVES: PSC strictures are routinely diagnosed on T2-MRCP as dominant- (DS) or high-grade stricture (HGS). However, high inter-observer variability limits their utility. We introduce the "potential functional stricture" (PFS) on T1-weighted hepatobiliary-phase images of gadoxetic acid-enhanced MR cholangiography (T1-MRC) to assess inter-reader agreement on diagnosis, location, and prognostic value of PFS on T1-MRC vs. DS or HGS on T2-MRCP in PSC patients, using ERCP as the gold standard. METHODS: Six blinded readers independently reviewed 129 MRIs to diagnose and locate stricture, if present. DS/HGS was determined on T2-MRCP. On T1-MRC, PFS was diagnosed if no GA excretion was seen in the CBD, hilum or distal RHD, or LHD. If excretion was normal, "no functional stricture" (NFS) was diagnosed. T1-MRC diagnoses (NFS = 87; PFS = 42) were correlated with ERCP, clinical scores, labs, splenic volume, and clinical events. Statistical analyses included Kaplan-Meier curves and Cox regression. RESULTS: Interobserver agreement was almost perfect for NFS vs. PFS diagnosis, but fair to moderate for DS and HGS. Forty-four ERCPs in 129 patients (34.1%) were performed, 39 in PFS (92.9%), and, due to clinical suspicion, five in NFS (5.7%) patients. PFS and NFS diagnoses had 100% PPV and 100% NPV, respectively. Labs and clinical scores were significantly worse for PFS vs. NFS. PFS patients underwent more diagnostic and therapeutic ERCPs, experienced more clinical events, and reached significantly more endpoints (p < 0.001) than those with NFS. Multivariate analysis identified PFS as an independent risk factor for liver-related events. CONCLUSION: T1-MRC was superior to T2-MRCP for stricture diagnosis, stricture location, and prognostication. CLINICAL RELEVANCE STATEMENT: Because half of PSC patients will develop clinically-relevant strictures over the course of the disease, earlier more confident diagnosis and correct localization of functional stricture on gadoxetic acid-enhanced MRI may optimize management and improve prognostication. KEY POINTS: • There is no consensus regarding biliary stricture imaging features in PSC that have clinical relevance. • Twenty-minute T1-weighted MRC images correctly classified PSC patients with potential (PFS) vs with no functional stricture (NFS). • T1-MRC diagnoses may reduce the burden of diagnostic ERCPs.


Subject(s)
Cholangiopancreatography, Magnetic Resonance , Cholangitis, Sclerosing , Humans , Cholangiopancreatography, Magnetic Resonance/methods , Constriction, Pathologic , Cholangitis, Sclerosing/complications , Cholangitis, Sclerosing/diagnostic imaging , Retrospective Studies , Magnetic Resonance Imaging/methods , Cholangiopancreatography, Endoscopic Retrograde
14.
Radiographics ; 43(8): e220210, 2023 08.
Article in English | MEDLINE | ID: mdl-37471247

ABSTRACT

Castleman disease (CD) is a group of rare and complex lymphoproliferative disorders that can manifest in two general forms: unicentric CD (UCD) and multicentric CD (MCD). These two forms differ in clinical manifestation, imaging appearances, treatment options, and prognosis. UCD typically manifests as a solitary enlarging mass that is discovered incidentally or after development of compression-type symptoms. MCD usually manifests acutely with systemic symptoms including fever and weight loss. As a whole, CD involves lymph nodes throughout the chest, neck, abdomen, pelvis, and axilla and can have a wide variety of imaging appearances. Most commonly, lymph nodes or masses in UCD occur in the chest, classically with well-defined borders, hyperenhancement, and possible characteristic patterns of calcification and/or feeding vessels. Lymph nodes affected by MCD, while also hyperenhancing, tend to involve multiple nodal chains and manifest alongside anasarca or hepatosplenomegaly. The polyneuropathy, organomegaly, endocrinopathy, monoclonal plasma cell disorder, and skin changes (POEMS) subtype of MCD may demonstrate lytic or sclerotic osseous lesions in addition to features typical of MCD. Since a diagnosis of CD based solely on imaging findings is often not possible, pathologic confirmation with core needle biopsy and/or surgical excision is necessary. Nevertheless, imaging plays a crucial role in supporting the diagnosis of CD, guiding appropriate regions for biopsy, and excluding other potential causes or mimics of disease. CT is frequently the initial imaging technique used in evaluating potential CD. MRI and PET play important roles in thoroughly evaluating the disease and determining its extent, especially the MCD form. Complete surgical excision is typically curative for UCD. MCD usually requires systemic therapy. ©RSNA, 2023 Quiz questions for this article are available in the supplemental material.


Subject(s)
Castleman Disease , Humans , Castleman Disease/diagnostic imaging , Castleman Disease/pathology , Lymph Nodes/diagnostic imaging , Lymph Nodes/pathology , Diagnostic Imaging/methods , Prognosis , Thorax
15.
Diagn Interv Radiol ; 29(4): 571-578, 2023 07 20.
Article in English | MEDLINE | ID: mdl-37310196

ABSTRACT

PURPOSE: To review imaging findings in chemotherapy-associated liver morphological changes in hepatic metastases (CALMCHeM) on computed tomography (CT)/magnetic resonance imaging (MRI) and its association with tumor burden. METHODS: We performed a retrospective chart review to identify patients with hepatic metastases who received chemotherapy and subsequent follow-up imaging where CT or MRI showed morphological changes in the liver. The morphological changes searched for were nodularity, capsular retraction, hypodense fibrotic bands, lobulated outline, atrophy or hypertrophy of segments or lobes, widened fissures, and one or more features of portal hypertension (splenomegaly/venous collaterals/ascites). The inclusion criteria were as follows: a) no known chronic liver disease; b) availability of CT or MRI images before chemotherapy that showed no morphological signs of chronic liver disease; c) at least one follow-up CT or MRI image demonstrating CALMCHeM after chemotherapy. Two radiologists in consensus graded the initial hepatic metastases tumor burden according to number (≤10 and >10), lobe distribution (single or both lobes), and liver parenchyma volume affected (<50%, or ≥50%). Imaging features after treatment were graded according to a pre-defined qualitative assessment scale of "normal," "mild," "moderate," or "severe." Descriptive statistics were performed with binary groups based on the number, lobar distribution, type, and volume of the liver affected. Chi-square and t-tests were used for comparative statistics. The Cox proportional hazard model was used to determine the association between severe CALMCHeM changes and age, sex, tumor burden, and primary carcinoma type. RESULTS: A total of 219 patients met the inclusion criteria. The most common primaries were from breast (58.4%), colorectal (14.2%), and neuroendocrine (11.0%) carcinomas. Hepatic metastases were discrete in 54.8% of cases, confluent in 38.8%, and diffuse in 6.4%. The number of metastases was >10 in 64.4% of patients. The volume of liver involved was <50% in 79.8% and ≥50% in 20.2% of cases. The severity of CALMCHeM at the first imaging follow-up was associated with a larger number of metastases (P = 0.002) and volume of the liver affected (P = 0.015). The severity of CALMCHeM had progressed to moderate to severe changes in 85.9% of patients, and 72.5% of patients had one or more features of portal hypertension at the last follow-up. The most common features at the final follow-up were nodularity (95.0%), capsular retraction (93.4%), atrophy (66.2%), and ascites (65.7%). The Cox proportional hazard model showed metastases affected ≥50% of the liver (P = 0.033), and the female gender (P = 0.004) was independently associated with severe CALMCHeM. CONCLUSION: CALMCHeM can be observed with a wide variety of malignancies, is progressive in severity, and the severity correlates with the initial metastatic liver disease burden.


Subject(s)
Hypertension, Portal , Liver Neoplasms , Female , Humans , Ascites , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/drug therapy , Retrospective Studies , Male
16.
Radiographics ; 43(6): e220181, 2023 06.
Article in English | MEDLINE | ID: mdl-37227944

ABSTRACT

Quantitative imaging biomarkers of liver disease measured by using MRI and US are emerging as important clinical tools in the management of patients with chronic liver disease (CLD). Because of their high accuracy and noninvasive nature, in many cases, these techniques have replaced liver biopsy for the diagnosis, quantitative staging, and treatment monitoring of patients with CLD. The most commonly evaluated imaging biomarkers are surrogates for liver fibrosis, fat, and iron. MR elastography is now routinely performed to evaluate for liver fibrosis and typically combined with MRI-based liver fat and iron quantification to exclude or grade hepatic steatosis and iron overload, respectively. US elastography is also widely performed to evaluate for liver fibrosis and has the advantage of lower equipment cost and greater availability compared with those of MRI. Emerging US fat quantification methods can be performed along with US elastography. The author group, consisting of members of the Society of Abdominal Radiology (SAR) Liver Fibrosis Disease-Focused Panel (DFP), the SAR Hepatic Iron Overload DFP, and the European Society of Radiology, review the basics of liver fibrosis, fat, and iron quantification with MRI and liver fibrosis and fat quantification with US. The authors cover technical requirements, typical case display, quality control and proper measurement technique and case interpretation guidelines, pitfalls, and confounding factors. The authors aim to provide a practical guide for radiologists interpreting these examinations. © RSNA, 2023 See the invited commentary by Ronot in this issue. Quiz questions for this article are available in the supplemental material.


Subject(s)
Elasticity Imaging Techniques , Iron Overload , Liver Diseases , Humans , Iron , Liver Cirrhosis/diagnostic imaging , Liver Cirrhosis/pathology , Liver/diagnostic imaging , Liver/pathology , Magnetic Resonance Imaging/methods , Liver Diseases/pathology , Iron Overload/diagnostic imaging , Elasticity Imaging Techniques/methods , Radiologists , Biomarkers
17.
Am J Surg Pathol ; 47(7): 792-800, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37204143

ABSTRACT

Newer radiotherapy techniques, such as stereotactic body radiation, have been increasingly used as part of the treatment of cholangiocarcinomas, particularly as a bridge to liver transplantation. Although conformal, these high-dose therapies result in tissue injury in the peritumoral liver tissue. This retrospective study characterized the morphologic changes in the liver after stereotactic body radiation in a series of liver explant specimens with perihilar cholangiocarcinoma. The morphologic changes in the irradiated zone were compared against the nonirradiated background liver parenchyma to control for chemotherapy-related changes. Of the 21 cases studied, 16 patients (76.2%) had underlying primary sclerosing cholangitis, and 13 patients (61.9%) had advanced liver fibrosis. The average duration between completion of radiotherapy and liver transplantation was 33.4 weeks (range: 6.29 to 67.7). Twelve patients (57.1%) had no residual tumor in the liver. The most frequent histologic changes in the peritumoral irradiated liver tissue were sinusoidal congestion (100%), sinusoidal edematous stroma (100%), and hepatocellular atrophy (100%), followed by partial/complete occlusion of central veins (76.2%), sinusoidal cellular infiltrates (76.2%), and hepatocyte dropout (66.7%). The findings in the radiated areas were more extensive than in the background liver ( P <0.01). Sinusoidal edematous stroma was striking and dominated the histologic findings in some cases. Over time, there was less sinusoidal congestion but more hepatocyte dropout (r s =-0.54, P =0.012 and r s =0.64, P =0.002, respectively). Uncommon findings, such as foam cell arteriopathy in the liver hilum, were also observed. In summary, postradiation liver specimens have distinctive morphologic findings.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Liver Neoplasms , Radiosurgery , Humans , Radiosurgery/adverse effects , Retrospective Studies , Liver/pathology , Cholangiocarcinoma/pathology , Liver Neoplasms/radiotherapy , Liver Neoplasms/pathology , Bile Ducts, Intrahepatic/pathology , Bile Duct Neoplasms/pathology
18.
Hepatology ; 78(4): 1200-1208, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37080558

ABSTRACT

BACKGROUND AND AIMS: The presence of at-risk NASH is associated with an increased risk of cirrhosis and complications. Therefore, noninvasive identification of at-risk NASH with an accurate biomarker is a critical need for pharmacologic therapy. We aim to explore the performance of several magnetic resonance (MR)-based imaging parameters in diagnosing at-risk NASH. APPROACH AND RESULTS: This prospective clinical trial (NCT02565446) includes 104 paired MR examinations and liver biopsies performed in patients with suspected or diagnosed NAFLD. Magnetic resonance elastography-assessed liver stiffness (LS), 6-point Dixon-derived proton density fat fraction (PDFF), and single-point saturation-recovery acquisition-calculated T1 relaxation time were explored. Among all predictors, LS showed the significantly highest accuracy in diagnosing at-risk NASH [AUC LS : 0.89 (0.82, 0.95), AUC PDFF : 0.70 (0.58, 0.81), AUC T1 : 0.72 (0.61, 0.82), z -score test z >1.96 for LS vs any of others]. The optimal cutoff value of LS to identify at-risk NASH patients was 3.3 kPa (sensitivity: 79%, specificity: 82%, negative predictive value: 91%), whereas the optimal cutoff value of T1 was 850 ms (sensitivity: 75%, specificity: 63%, and negative predictive value: 87%). PDFF had the highest performance in diagnosing NASH with any fibrosis stage [AUC PDFF : 0.82 (0.72, 0.91), AUC LS : 0.73 (0.63, 0.84), AUC T1 : 0.72 (0.61, 0.83), |z| <1.96 for all]. CONCLUSION: Magnetic resonance elastography-assessed LS alone outperformed PDFF, and T1 in identifying patients with at-risk NASH for therapeutic trials.


Subject(s)
Elasticity Imaging Techniques , Non-alcoholic Fatty Liver Disease , Humans , Elasticity Imaging Techniques/methods , Liver/diagnostic imaging , Liver/pathology , Liver Cirrhosis/pathology , Magnetic Resonance Imaging/methods , Non-alcoholic Fatty Liver Disease/complications , Protons , Prospective Studies
19.
20.
Hum Pathol ; 132: 77-88, 2023 02.
Article in English | MEDLINE | ID: mdl-35809684

ABSTRACT

Primary hepatic neuroendocrine tumors and primary hepatic neuroendocrine carcinomas are rare and pose challenges for both diagnosis and for determining whether the tumor is primary to the liver versus metastatic disease. The lack of a uniform definition for primary hepatic neuroendocrine neoplasms is also a limitation to understanding and treating these rare tumors. Recently, there have been significant histological advances in the diagnosis and classification of neuroendocrine tumors in general, as well as significant advances in imaging for neuroendocrine neoplasms, all of which are important for their treatment. This article presents a multiple disciplinary definition and proposed guidelines for diagnosing a neuroendocrine tumor/neuroendocrine carcinomas as being primary to the liver.


Subject(s)
Carcinoma, Neuroendocrine , Liver Neoplasms , Neuroendocrine Tumors , Humans , Neuroendocrine Tumors/pathology , Liver Neoplasms/pathology , Carcinoma, Neuroendocrine/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...