Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 4(4): 6218-6228, 2019 Apr 30.
Article in English | MEDLINE | ID: mdl-31459764

ABSTRACT

Novel amphiphilic Zn(II)phthalocyanines (ZnPcs) peripherally substituted with four and eight dimethylaminopyridinium units (ZnPc1 and ZnPc2) were synthesized by cyclotetramerization of the corresponding phthalonitriles. The effect of aggregation and photophysical (fluorescence quantum yields and lifetimes) and photochemical (singlet oxygen generation and photodegradation under light irradiation) properties was investigated. The chemosensing ability of ZnPcs toward explosive nitroaromatic compounds was explored in aqueous medium. This study demonstrates that ZnPc1 and ZnPc2 show fluorescence quenching behavior upon interaction with different nitro analytes and show unprecedented selectivity toward 2,4,6-trinitrophenol with a limit of detection (LOD) of 0.7-1.1 ppm with a high quenching rate constant (K sv) of 1.6-2.02 × 105. The near-infrared (NIR) fluorescence in thin films was quenched efficiently because of the photoinduced electron-transfer process through strong intermolecular π-π and electrostatic interactions. The sensing process is highly reversible and free from the interference of other commonly encountered nitro analytes. Further, experiments were performed to demonstrate the use of ZnPcs as efficient heterogeneous photocatalysts in the reduction of nitro explosives. The smart dual performance of multicharged ZnPcs in aqueous media quantifies them as attractive candidates in developing sensor materials at the NIR region and to possibly convert the toxic explosives into useful scaffolds. These results provide an interesting perspective toward elaboration of stable fluorescent systems for the selective sensing behavior of nitro explosives and their facile heterogeneous catalytic behavior in the reduction reactions.

2.
ACS Appl Mater Interfaces ; 10(4): 3838-3847, 2018 Jan 31.
Article in English | MEDLINE | ID: mdl-29336547

ABSTRACT

A new class of donor-bridge-acceptor (D-π-A) π-conjugated light-emitting molecules comprising carbazole as donor and maleimide (Cbz-MI, Cbz-MI(d)), phthalimide (Cbz-Pth) as acceptor units with phenyl ring as spacer have been synthesized in good yields. These compounds exhibit high quantum yield with three distinct emission colors yellowish-green (Cbz-MI), bright yellow Cbz-MI(d), and sky blue (Cbz-Pth) in the solid state. Single-crystal X-ray and quantum chemical calculations reveals that twisting of the phenyl rings with high torsional angle on maleimide and phthalimide units reduce the effective inter-chromophore electronic coupling, furnish dramatic changes in their photophysical properties in solution and solid states. Intriguingly, Cbz-MI(d) and Cbz-Pth exhibits a unique aggregation-induced blue-shifted emission (AIBSE) due to restricted intramolecular rotation (RIR) process, while Cbz-MI shows red-shifted emission in the solid state. The solvatochromic study reveal that combined RIR and excited state migration augment AIE (aggregation-induced emission) properties. The electrochemical properties reveal that Cbz-MI exhibits high oxidation propensity while Cbz-Pth shows low reduction values. Subsequently, organic light-emitting diodes (OLEDs) were fabricated with a simple three-layer device containing Cbz-Pth and Cbz-MI(d) as emitting layers. Cbz-MI(d) exhibits high performance yellow OLED with an external quantum efficiency exceeding ∼4.1% and a brightness exceeding ∼73915 cd/m2, which is among the best performance reported for bright yellow fluorescence organic light-emitting diodes.

4.
Photochem Photobiol Sci ; 14(10): 1872-9, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26222379

ABSTRACT

The aim of this work was the development of a family of novel water soluble Zinc(II) phthalocyanines (Pc) for the photodynamic inactivation of Gram-negative bacteria. Pc derivatives 1a, 2a and 3a containing trimethylammonium groups with varied number and nature of the groups at peripheral positions were synthesized by cyclotetramerization of dimethyl amino substituted phthalonitriles in the presence of zinc powder, using 1-chloronaphthalene as a solvent, followed by cationization using dimethyl sulfate. The solubility, singlet oxygen generation ((1)O2) and stability/photostability of each Pc were evaluated as well as the affinity to bacterial cells and their photosensitizing potential against a recombinant bioluminescent Escherichia coli strain, used as a biological model for Gram negative bacteria. The efficiency of photodynamic inactivation was assessed under white and red light at an irradiance of 150 mW cm(-2). All Pc were soluble in phosphate buffer saline and in dimethyl sulfoxide and demonstrated good stability/photostability. The photochemical parameters reveal that Pc 2a and 3a are more efficient singlet oxygen producers than Pc 1a, for which singlet oxygen generation could not be demonstrated. Pc 2a and 3a caused photosensitization in E. coli. The inactivation factors attained with red light were, however, generally higher than those with white light. Under red light Pc 3a and 2a caused, respectively, 5.6 and 4.9 log reduction in the bioluminescence of the E. coli while, with white light, the corresponding inactivation factors were 2.5 and 0.5 log. The order of the PDI efficiency (3a > 2a ⋙ 1a) was determined by the combined effect of solubility, singlet oxygen generation ability and affinity to bacterial cells. Ammonium phthalocyanines with eight charges or containing halogen atoms such as chlorine, when irradiated with red light can, therefore, be regarded as promising photosensitizers for the inactivation of Gram-negative bacteria.


Subject(s)
Escherichia coli/drug effects , Escherichia coli/radiation effects , Indoles/chemistry , Microbial Viability/drug effects , Microbial Viability/radiation effects , Photosensitizing Agents/pharmacology , Zinc/chemistry , Drug Stability , Escherichia coli/cytology , Escherichia coli/physiology , Isoindoles , Photosensitizing Agents/chemistry , Singlet Oxygen/chemistry
5.
Anal Chem ; 87(8): 4515-22, 2015 Apr 21.
Article in English | MEDLINE | ID: mdl-25810105

ABSTRACT

Fluorescent molecular probes based on phosphonate-functionalized porphyrin derivatives have been designed for selective detection of nitroaromatics. It is shown that molecular recognition is based on cooperative hydrogen bonding and π-π stacking interactions with electron-deficient molecules (nitroaromatic compounds, NACs), displaying superior detection toward trinitrotoluene (TNT). The P═O functional groups decrease the lowest unoccupied molecular orbital (LUMO) energy level of the porphyrins and, consequently, facilitate the electron inoculation to TNT through a photoinduced electron transfer (PET) process. The hydroxyl groups of the phosphonates and pyrrole -NH protons are further engaged in donor-acceptor interactions with TNT by strong intermolecular hydrogen bonding interactions (as evidenced by single crystal X-ray, NMR, and density functional theory (DFT)) showing turn off fluorescence behavior. The nonplanarity of the porphyrins induced by protonation at the central core of the porphyrin H4TPPA(2+) undergoes additional interactions, furnishing an anomalous increase in the selectivity of TNT at nanomolar levels in solution (limit of detection, LOD ∼ 5 nM). Porphyrin-doped hybrid PMMA [poly(methyl methacrylate)] polymer films demonstrate the reversibility of the fluorescence behavior and exhibit high photostability. The formation of discrete molecular aggregates on the surface of hybrid films and efficient diffusion of TNT vapors (10 ppb) displayed high selectivity in the solid state. The hybrid films are further used to demonstrate the detection of NACs in the aqueous medium, ultimately providing a platform for a practical strategy and implementation for the detection of toxic NACs.

6.
Chem Commun (Camb) ; 50(68): 9683-6, 2014 Sep 04.
Article in English | MEDLINE | ID: mdl-25017665

ABSTRACT

A new class of dual fluorescent chemosensors for nitroaromatic compounds (NACs) based on phosphonated pyrene derivatives is reported, showing high selectivity towards trinitrotoluene (TNT). The strong intermolecular interactions (π-π stacking and hydrogen bonding) allow high fluorescence quenching with visual detection in short response times.

7.
Chemistry ; 18(46): 14745-51, 2012 Nov 12.
Article in English | MEDLINE | ID: mdl-23015532

ABSTRACT

Herein we report a novel fluoranthene-based fluorescent fluorophore 7,10-bis(4-bromophenyl)-8,9-bis[4-(hexyloxy)phenyl]fluoranthene (S(3)) and its remarkable properties in applications of explosive detection. The sensitivity towards the detection of nitroaromatics (NACs) was evaluated through fluorescence quenching in solution, vapor, and contact mode approaches. The contact mode approach using thin-layer silica chromatographic plates exhibited a femtogram (1.15 fg cm(-2)) detection limit for trinitrotoluene (TNT) and picric acid (PA), whereas the solution-phase quenching showed PA detection at the 2-20 ppb level. Fluorescence lifetime measurements revealed that the quenching is static in nature and the quenching process is fully reversible. Binding energies between model binding sites of the S(3) and analyte compounds reveal that analyte molecules enter into the cavity created by substituted phenyl rings of fluoranthene and are stabilized by strong intermolecular interactions with alkyl chains. It is anticipated that the sensor S(3) could be a promising material for the construction of portable optical devices for the detection of onsite explosive nitroaromatics.

8.
Chem Commun (Camb) ; 48(41): 5007-9, 2012 May 21.
Article in English | MEDLINE | ID: mdl-22510751

ABSTRACT

A novel fluoranthene based fluorescent chemosensor for the detection of picric acid (PA) at the parts per billion (ppb) level was evaluated. Static fluorescence quenching was the dominant process by intercalative π-π interaction between fluoranthene (S(1)) and nitroaromatics.

9.
Article in English | MEDLINE | ID: mdl-22112571

ABSTRACT

The glasses of the composition 19Na(2)SO(4)-20MO-60P(2)O(5): 1.0Ho(2)O(3)/1.0Er(2)O(3) (M=Mg, Ca, and Ba) have been synthesized. Optical absorption and fluorescence spectra (in the spectral range 350-2100 nm were studied at ambient temperature. The spectra were characterized using Judd-Ofelt theory. From the luminescence spectra, various radiative properties like transition probability A, branching ratio ß and the radiative life time τ for blue (B), green (G) and red (R) emission levels of these glasses have been evaluated. The energy transfer between the two rare earth ions (Ho(3+) and Er(3+)) in co-doped Na(2)SO(4)-MO-P(2)O(5) glass systems in the visible and NIR regions has also been investigated. Highest intensity, the highest quantum efficiency and maximum energy transfer with low phonon losses of B, G, and R lines has been observed in BaO mixed glasses. The reasons for such higher values of these parameters have been discussed in the light of varying field strengths at the rare earths ion site due to replacement of one modifier oxide with the other. The enhanced intensity of NIR emission (at 2.0 µm) has also been discussed in terms of cross relaxation of Er(3+) ions from (4)I(13/2) level to (5)I(7) of Ho(3+) ions.


Subject(s)
Erbium/chemistry , Glass/chemistry , Holmium/chemistry , Oxides/chemistry , Sulfates/chemistry , Absorption , Kinetics , Luminescence , Optical Phenomena , Quantum Theory , Spectrometry, Fluorescence , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...