Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
bioRxiv ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38293207

ABSTRACT

Ischemic stroke-induced mitochondrial dysfunction in the blood-brain barrier-forming brain endothelial cells ( BECs ) results in long-term neurological dysfunction post-stroke. We previously data from a pilot study where intravenous administration of human BEC ( hBEC )-derived mitochondria-containing extracellular vesicles ( EVs ) showed a potential efficacy signal in a mouse middle cerebral artery occlusion ( MCAo ) model of stroke. We hypothesized that EVs harvested from donor species homologous to the recipient species ( e.g., mouse) may improve therapeutic efficacy, and therefore, use of mouse BEC ( mBEC )-derived EVs may improve post-stroke outcomes in MCAo mice. We investigated potential differences in the mitochondria transfer of EVs derived from the same species as the recipient cell (mBEC-EVs and recipient mBECs or hBECs-EVs and recipient hBECs) vs . cross-species EVs and recipient cells (mBEC-EVs and recipient hBECs or vice versa ). Our results showed that while both hBEC- and mBEC-EVs transferred EV mitochondria, mBEC-EVs outperformed hBEC-EVs in increasing ATP levels and improved recipient mBEC mitochondrial function via increasing oxygen consumption rates. mBEC-EVs significantly reduced brain infarct volume and neurological deficit scores compared to vehicle-injected MCAo mice. The superior therapeutic efficacy of mBEC-EVs in a mouse MCAo stroke support the continued use of mBEC-EVs to optimize the therapeutic potential of mitochondria-containing EVs in preclinical mouse models.

2.
Gut Microbes ; 15(2): 2271629, 2023 12.
Article in English | MEDLINE | ID: mdl-37910478

ABSTRACT

The gut is a major source of bacteria and antigens that contribute to neuroinflammation after brain injury. Colonic epithelial cells (ECs) are responsible for secreting major cellular components of the innate defense system, including antimicrobial proteins (AMP) and mucins. These cells serve as a critical regulator of gut barrier function and maintain host-microbe homeostasis. In this study, we determined post-stroke host defense responses at the colonic epithelial surface in mice. We then tested if the enhancement of these epithelial protective mechanisms is beneficial in young and aged mice after stroke. AMPs were significantly increased in the colonic ECs of young males, but not in young females after experimental stroke. In contrast, mucin-related genes were enhanced in young females and contributed to mucus formation that maintains the distance between the host and gut bacteria. Bacterial community profiling was done using universal amplification of 16S rRNA gene sequences. The sex-specific colonic epithelial defense responses after stroke in young females were reversed with ovariectomy and led to a shift from a predominately mucin response to the enhanced AMP expression seen in males after stroke. Estradiol (E2) replacement prior to stroke in aged females increased mucin gene expression in the colonic ECs. Interestingly, we found that E2 treatment reduced stroke-associated neuronal hyperactivity in the insular cortex, a brain region that interacts with visceral organs such as the gut, in parallel to an increase in the composition of Lactobacillus and Bifidobacterium in the gut microbiota. This is the first study demonstrating sex differences in host defense mechanisms in the gut after brain injury.


Subject(s)
Brain Injuries , Gastrointestinal Microbiome , Mice , Female , Male , Animals , Intestinal Mucosa/microbiology , Estradiol , RNA, Ribosomal, 16S/genetics , Mucins/metabolism , Brain Injuries/metabolism
3.
Res Sq ; 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37790313

ABSTRACT

Background: Stroke is a major cause of morbidity and mortality, and its incidence increases with age. While acute therapies for stroke are currently limited to intravenous thrombolytics and endovascular thrombectomy, recent studies have implicated an important role for the gut microbiome in post-stroke neuroinflammation. After stroke, several immuno-regulatory pathways, including the aryl hydrocarbon receptor (AHR) pathway, become activated. AHR is a master regulatory pathway that mediates neuroinflammation. Among various cell types, microglia (MG), as the resident immune cells of the brain, play a vital role in regulating post-stroke neuroinflammation and antigen presentation. Activation of AHR is dependent on a dynamic balance between host-derived and microbiota-derived ligands. While previous studies have shown that activation of MG AHR by host-derived ligands, such as kynurenine, is detrimental after stroke, the effects of post-stroke changes in microbiota-derived ligands of AHR, such as indoles, is unknown. Our study builds on the concept that differential activation of MG AHR by host-derived versus microbiome-derived metabolites affects outcomes after ischemic stroke. We examined the link between stroke-induced dysbiosis and loss of essential microbiota-derived AHR ligands. We hypothesize that restoring the balance between host-derived (kynurenine) and microbiota-derived (indoles) ligands of AHR is beneficial after stroke, offering a new potential avenue for therapeutic intervention in post-stroke neuroinflammation. Method: We performed immunohistochemical analysis of brain samples from stroke patients to assess MG AHR expression after stroke. We used metabolomics analysis of plasma samples from stroke and non-stroke control patients with matched comorbidities to determine the levels of indole-based AHR ligands after stroke. We performed transient middle cerebral artery occlusion (MCAO) in aged (18 months) wild-type (WT) and germ-free (GF) mice to investigate the effects of post-stroke treatment with microbiota-derived indoles on outcome. To generate our results, we employed a range of methodologies, including flow cytometry, metabolomics, and 16S microbiome sequencing. Results: We found that MG AHR expression is increased in human brain after stroke and after ex vivo oxygen-glucose deprivation and reperfusion (OGD/R). Microbiota-derived ligands of AHR are decreased in the human plasma at 24 hours after ischemic stroke. Kynurenine and indoles exhibited differential effects on aged WT MG survival after ex vivoOGD/R. We found that specific indole-based ligands of AHR (indole-3-propionic acid and indole-3-aldehyde) were absent in GF mice, thus their production depends on the presence of a functional gut microbiota. Additionally, a time-dependent decrease in the concentration of these indole-based AHR ligands occurred in the brain within the first 24 hours after stroke in aged WT mice. Post-stroke treatment of GF mice with a cocktail of microbiota-derived indole-based ligands of AHR regulated MG-mediated neuroinflammation and molecules involved in antigen presentation (increased CD80, MHC-II, and CD11b). Post-stroke treatment of aged WT mice with microbiota-derived indole-based ligands of AHR reduced both infarct volume and neurological deficits at 24 hours. Conclusion: Our novel findings provide compelling evidence that the restoration of a well-balanced pool of host-derived kynurenine-based and microbiota-derived indole-based ligands of AHR holds considerable therapeutic potential for the treatment of ischemic stroke.

4.
J Control Release ; 354: 368-393, 2023 02.
Article in English | MEDLINE | ID: mdl-36642252

ABSTRACT

Ischemic stroke causes brain endothelial cell (BEC) death and damages tight junction integrity of the blood-brain barrier (BBB). We harnessed the innate mitochondrial load of BEC-derived extracellular vesicles (EVs) and utilized mixtures of EV/exogenous 27 kDa heat shock protein (HSP27) as a one-two punch strategy to increase BEC survival (via EV mitochondria) and preserve their tight junction integrity (via HSP27 effects). We demonstrated that the medium-to-large (m/lEV) but not small EVs (sEV) transferred their mitochondrial load, that subsequently colocalized with the mitochondrial network of the recipient primary human BECs. Recipient BECs treated with m/lEVs showed increased relative ATP levels and mitochondrial function. To determine if the m/lEV-meditated increase in recipient BEC ATP levels was associated with m/lEV mitochondria, we isolated m/lEVs from donor BECs pre-treated with oligomycin A (OGM, mitochondria electron transport complex V inhibitor), referred to as OGM-m/lEVs. BECs treated with naïve m/lEVs showed a significant increase in ATP levels compared to untreated OGD cells, OGM-m/lEVs treated BECs showed a loss of ATP levels suggesting that the m/lEV-mediated increase in ATP levels is likely a function of their innate mitochondrial load. In contrast, sEV-mediated ATP increases were not affected by inhibition of mitochondrial function in the donor BECs. Intravenously administered m/lEVs showed a reduction in brain infarct sizes compared to vehicle-injected mice in a mouse middle cerebral artery occlusion model of ischemic stroke. We formulated binary mixtures of human recombinant HSP27 protein with EVs: EV/HSP27 and ternary mixtures of HSP27 and EVs with a cationic polymer, poly (ethylene glycol)-b-poly (diethyltriamine): (PEG-DET/HSP27)/EV. (PEG-DET/HSP27)/EV and EV/HSP27 mixtures decreased the paracellular permeability of small and large molecular mass fluorescent tracers in oxygen glucose-deprived primary human BECs. This one-two punch approach to increase BEC metabolic function and tight junction integrity may be a promising strategy for BBB protection and prevention of long-term neurological dysfunction post-ischemic stroke.


Subject(s)
Extracellular Vesicles , Ischemic Stroke , Stroke , Mice , Humans , Animals , HSP27 Heat-Shock Proteins/metabolism , Brain/metabolism , Blood-Brain Barrier/metabolism , Stroke/metabolism , Infarction, Middle Cerebral Artery/metabolism , Heat-Shock Proteins/metabolism , Ischemic Stroke/metabolism , Mitochondria/metabolism , Extracellular Vesicles/metabolism , Adenosine Triphosphate/metabolism
5.
EMBO Rep ; 23(12): e55208, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36254885

ABSTRACT

The establishment of macromolecular complexes by scaffolding proteins is key to the local production of cAMP by anchored adenylyl cyclase (AC) and the subsequent cAMP signaling necessary for cardiac functions. We identify a novel AC scaffold, the Popeye domain-containing (POPDC) protein. The POPDC family of proteins is important for cardiac pacemaking and conduction, due in part to their cAMP-dependent binding and regulation of TREK-1 potassium channels. We show that TREK-1 binds the AC9:POPDC1 complex and copurifies in a POPDC1-dependent manner with AC9 activity in heart. Although the AC9:POPDC1 interaction is cAMP-independent, TREK-1 association with AC9 and POPDC1 is reduced upon stimulation of the ß-adrenergic receptor (ßAR). AC9 activity is required for ßAR reduction of TREK-1 complex formation with AC9:POPDC1 and in reversing POPDC1 enhancement of TREK-1 currents. Finally, deletion of the gene-encoding AC9 (Adcy9) gives rise to bradycardia at rest and stress-induced heart rate variability, a milder phenotype than the loss of Popdc1 but similar to the loss of Kcnk2 (TREK-1). Thus, POPDC1 represents a novel adaptor for AC9 interactions with TREK-1 to regulate heart rate control.


Subject(s)
Adenylyl Cyclases , Potassium Channels , Adenylyl Cyclases/genetics
6.
J Clin Invest ; 131(17)2021 09 01.
Article in English | MEDLINE | ID: mdl-34580244

ABSTRACT

Inter-α inhibitor proteins (IAIPs) are a family of endogenous plasma and extracellular matrix molecules. IAIPs suppress proinflammatory cytokines, limit excess complement activation, and bind extracellular histones to form IAIP-histone complexes, leading to neutralization of histone-associated cytotoxicity in models of sepsis. Many of these detrimental processes also play critical roles in the pathophysiology of ischemic stroke. In this study, we first assessed the clinical relevance of IAIPs in stroke and then tested the therapeutic efficacy of exogenous IAIPs in several experimental stroke models. IAIP levels were reduced in both ischemic stroke patients and in mice subjected to experimental ischemic stroke when compared with controls. Post-stroke administration of IAIP significantly improved stroke outcomes across multiple stroke models, even when given 6 hours after stroke onset. Importantly, the beneficial effects of delayed IAIP treatment were observed in both young and aged mice. Using targeted gene expression analysis, we identified a receptor for complement activation, C5aR1, that was highly suppressed in both the blood and brain of IAIP-treated animals. Subsequent experiments using C5aR1-knockout mice demonstrated that the beneficial effects of IAIPs are mediated in part by C5aR1. These results indicate that IAIP is a potential therapeutic candidate for the treatment of ischemic stroke.


Subject(s)
Alpha-Globulins/therapeutic use , Ischemic Stroke/drug therapy , Alpha-Globulins/administration & dosage , Alpha-Globulins/metabolism , Animals , Brain Edema/drug therapy , Brain Edema/pathology , Brain Infarction/drug therapy , Brain Infarction/pathology , Cell Death/drug effects , Disease Models, Animal , Female , Humans , Ischemic Stroke/metabolism , Ischemic Stroke/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptor, Anaphylatoxin C5a/deficiency , Receptor, Anaphylatoxin C5a/genetics , Receptor, Anaphylatoxin C5a/metabolism , Tissue Plasminogen Activator/administration & dosage
7.
Cells ; 10(7)2021 07 20.
Article in English | MEDLINE | ID: mdl-34359998

ABSTRACT

Ischemic stroke triggers a series of complex pathophysiological processes including autophagy. Differential activation of autophagy occurs in neurons derived from males versus females after stressors such as nutrient deprivation. Whether autophagy displays sexual dimorphism after ischemic stroke is unknown. We used a cerebral ischemia mouse model (middle cerebral artery occlusion, MCAO) to evaluate the effects of inhibiting autophagy in ischemic brain pathology. We observed that inhibiting autophagy reduced infarct volume in males and ovariectomized females. However, autophagy inhibition enhanced infarct size in females and in ovariectomized females supplemented with estrogen compared to control mice. We also observed that males had increased levels of Beclin1 and LC3 and decreased levels of pULK1 and p62 at 24 h, while females had decreased levels of Beclin1 and increased levels of ATG7. Furthermore, the levels of autophagy markers were increased under basal conditions and after oxygen and glucose deprivation in male neurons compared with female neurons in vitro. E2 supplementation significantly inhibited autophagy only in male neurons, and was beneficial for cell survival only in female neurons. This study shows that autophagy in the ischemic brain differs between the sexes, and that autophagy regulators have different effects in a sex-dependent manner in neurons.


Subject(s)
Autophagy/genetics , Beclin-1/genetics , Brain Ischemia/genetics , Ischemic Stroke/genetics , Microtubule-Associated Proteins/genetics , Neurons/metabolism , Adenine/analogs & derivatives , Adenine/pharmacology , Animals , Autophagy/drug effects , Autophagy-Related Protein 7/genetics , Autophagy-Related Protein 7/metabolism , Autophagy-Related Protein-1 Homolog/genetics , Autophagy-Related Protein-1 Homolog/metabolism , Beclin-1/metabolism , Brain Ischemia/metabolism , Brain Ischemia/pathology , Cell Hypoxia/genetics , Cell Survival , Female , Gene Expression Regulation , Glucose/deficiency , Infarction, Middle Cerebral Artery/surgery , Ischemic Stroke/metabolism , Ischemic Stroke/pathology , Male , Mice , Mice, Inbred C57BL , Microtubule-Associated Proteins/metabolism , Neurons/pathology , Ovariectomy/methods , Sequestosome-1 Protein/genetics , Sequestosome-1 Protein/metabolism , Severity of Illness Index , Sex Factors , Signal Transduction
8.
J Huntingtons Dis ; 10(3): 349-354, 2021.
Article in English | MEDLINE | ID: mdl-34092650

ABSTRACT

The role of oxytocin (OT) in social cognition of patients with Huntington's disease (HD) has been studied, but its impact on executive functioning has not been explored yet. Healthy controls, premanifest HD, and manifest HD participants underwent executive functioning assessment and OT plasma measurement. There were no significant group differences in plasma OT levels. Higher OT levels were associated with better executive functioning in premanifest HD participants. Our findings revealed an association between OT levels and depressive symptoms in premanifest and manifest HD participants. The potential role of OT in HD deserves further investigation.


Subject(s)
Huntington Disease , Oxytocin , Executive Function , Humans , Neuropsychological Tests , Pilot Projects
9.
Stroke ; 52(7): 2381-2392, 2021 07.
Article in English | MEDLINE | ID: mdl-33940958

ABSTRACT

Background and Purpose: Stroke induces the expression of several long noncoding RNAs in the brain. However, their functional significance in poststroke outcome is poorly understood. We recently observed that a brain-specific long noncoding RNA called Fos downstream transcript (FosDT) is induced rapidly in the rodent brain following focal ischemia. Using FosDT knockout rats, we presently evaluated the role of FosDT in poststroke brain damage. Methods: FosDT knockout rats were generated using CRISPR-Cas9 genome editing on a Sprague-Dawley background. Male and female FosDT−/− and FosDT+/+ cohorts were subjected to transient middle cerebral artery occlusion. Postischemic sensorimotor deficits were evaluated between days 1 and 7 and lesion volume on day 7 of reperfusion. The developmental expression profile of FosDT was determined with real-time polymerase chain reaction and mechanistic implications of FosDT in the ischemic brain were conducted with RNA-sequencing analysis and immunostaining of pathological markers. Results: FosDT expression is developmentally regulated, with the adult cerebral cortex showing significantly higher FosDT expression than neonates. FosDT−/− rats did not show any anomalies in growth and development, fertility, brain cytoarchitecture, and cerebral vasculature. However, when subjected to transient focal ischemia, FosDT−/− rats of both sexes showed enhanced sensorimotor recovery and reduced brain damage. RNA-sequencing analysis showed that improved poststroke functional outcome in FosDT−/− rats is partially associated with curtailed induction of inflammatory genes, reduced apoptosis, mitochondrial dysfunction, and oxidative stress. Conclusions: Our study shows that FosDT is developmentally dispensable, mechanistically important, and a functionally promising target to reduce ischemic brain damage and facilitate neurological recovery.


Subject(s)
Brain/growth & development , Proto-Oncogene Proteins c-fos/genetics , RNA, Long Noncoding/genetics , Recovery of Function/physiology , Stroke/genetics , Animals , Brain/metabolism , Female , Male , Proto-Oncogene Proteins c-fos/deficiency , RNA, Long Noncoding/biosynthesis , Rats , Rats, Sprague-Dawley , Rats, Transgenic , Stroke/physiopathology
10.
Pediatr Res ; 90(5): 980-988, 2021 11.
Article in English | MEDLINE | ID: mdl-33531679

ABSTRACT

BACKGROUND: Probiotic Lactobacillus reuteri DSM 17938 (LR 17938) is beneficial to infants with colic. To understand its mechanism of action, we assessed ultrasonic vocalizations (USV) and brain pain/stress genes in newborn mice exposed to maternal separation stress. METHODS: Pups were exposed to unpredictable maternal separation (MSU or SEP) or MSU combined with unpredictable maternal stress (MSU + MSUS or S + S), from postnatal days 5 to 14. USV calls and pain/stress/neuroinflammation-related genes in the brain were analyzed. RESULTS: We defined 10 different neonatal call patterns, none of which increased after MSU. Stress reduced overall USV calls. Orally feeding LR 17938 also did not change USV calls after MSU. However, LR 17938 markedly increased vocalizations in mice allowed to stay with their dams. Even though LR 17938 did not change MSU-related calls, LR 17938 modulated brain genes related to stress and pain. Up-regulated genes following LR 17938 treatment were opioid peptides, kappa-opioid receptor 1 genes, and CD200, important in anti-inflammatory signaling. LR 17938 down-regulated CCR2 transcripts, a chemokine receptor, in the stressed neonatal brain. CONCLUSIONS: USV calls in newborn mice are interpreted as "physiological calls" instead of "cries." Feeding LR 17938 after MSU did not change USV calls but modulated cerebral genes favoring pain and stress reduction and anti-inflammatory signaling. IMPACT: We defined mouse ultrasonic vocalization (USV) call patterns in this study, which will be important in guiding future studies in other mouse strains. Newborn mice with maternal separation stress have reduced USVs, compared to newborn mice without stress, indicating USV calls may represent "physiological calling" instead of "crying." Oral feeding of probiotic Lactobacillus reuteri DSM 17938 raised the number of calls when newborn mice continued to suckle on their dams, but not when mice were under stress. The probiotic bacteria had a dampening effect on monocyte activation and on epinephrine and glutamate-related stress gene expression in the mouse brain.


Subject(s)
Animals, Newborn , Limosilactobacillus reuteri , Maternal Deprivation , Probiotics , Animal Communication , Animals , Female , Male , Mice , Mice, Inbred C57BL
11.
Neuromolecular Med ; 23(2): 305-314, 2021 06.
Article in English | MEDLINE | ID: mdl-33074466

ABSTRACT

Social isolation (SI) increases ischemic injury and significantly delays recovery after experimental stroke. Changes in circulating microRNAs (miRNAs) have been implicated in several neurological disorders, including stroke. However, potential biomarkers to elucidate the mechanisms that underlie the detrimental effects of post-stroke isolation are unknown. Aged C57BL/6 male and female mice (18-20 months) were subjected to a 60-min middle cerebral artery occlusion followed by reperfusion and were assigned to either isolation (SI) or continued pair housing (PH) immediately after stroke. On day 15, mice were sacrificed, and plasma samples were collected for miRNAome analysis. Top candidate miRNAs and their biological functions were identified using integrated bioinformatics. The miRNAome analysis revealed a total of 21 differentially expressed miRNAs across both sexes with fold change of 3 or higher. Within the female cohort, miR-206-3p, -376a-3p, -34b-5p, -133a-5p, -466f, and -671-3p were highly altered relative to the PH housing condition. Similarly in males, miR-376c-3p, -181d-5p, -712-5p, -186-5p, -21a-3p, -30d-3p, -495-3p, -669c-5p, -335-5p, -429-3p, -31-3p, and -217-5p were identified. Following Kyoto Encyclopedia of Genes and Genomes analysis, the identified miRNAs effected distinct subset of pathways within sexes. Interactional network analysis revealed miR-495-3p (male) and miR-34b-5p (female) as pivotal nodes that targeted the largest subset of genes. We identified several sex-specific miRNAs as candidate biomarkers for post-stroke SI in aged male and female mice. Additionally, these results suggest that there is potential to use plasma-based circulating miRNAs as a source of novel biomarkers to identify biological pathways involved in post-stroke SI.


Subject(s)
Gene Expression Profiling , Infarction, Middle Cerebral Artery/genetics , MicroRNAs/blood , Social Isolation , Tissue Array Analysis , Age Factors , Animals , Biomarkers , Female , Gene Expression Regulation , Gene Ontology , Gene Regulatory Networks , Housing, Animal , Infarction, Middle Cerebral Artery/physiopathology , Infarction, Middle Cerebral Artery/psychology , Male , Mice , Mice, Inbred C57BL , MicroRNAs/biosynthesis , MicroRNAs/genetics , RNA, Messenger/genetics , ROC Curve , Random Allocation , Sex Factors
12.
Int J Mol Sci ; 22(1)2020 Dec 24.
Article in English | MEDLINE | ID: mdl-33374156

ABSTRACT

Social isolation and loneliness are risk factors for stroke. Elderly women are more likely to be isolated. Census data shows that in homeowners over the age of 65, women are much more likely to live alone. However, the underlying mechanisms of the detrimental effects of isolation have not been well studied in older females. In this study, we hypothesized that isolation impairs post-stroke recovery in aged female mice, leading to dysregulated microRNAs (miRNAs) in the brain, including those previously shown to be involved in response to social isolation (SI). Aged C57BL/6 female mice were subjected to a 60-min middle cerebral artery occlusion and were randomly assigned to either single housing (SI) or continued pair housing (PH) immediately after stroke for 15 days. SI immediately after stroke led to significantly more brain tissue loss after stroke and higher mortality. Furthermore, SI significantly delayed motor and sensory recovery and worsened cognitive function, compared to PH. A decrease in cell proliferation was seen in the dentate gyrus of SI mice assessed by bromodeoxyuridine (BrdU) labeling. miRNAome data analysis revealed changes in several miRNAs in the brain, such as miR-297a-3p and miR-200c-3p, which are known to regulate pathways involved in cell proliferation. In conclusion, our data suggest that SI can lead to a poor post-stroke recovery in aged females and dysregulation of miRNAs and reduced hippocampal cell proliferation.


Subject(s)
Aging/metabolism , Cell Proliferation , Dentate Gyrus/metabolism , MicroRNAs/metabolism , Social Isolation , Stroke/metabolism , Aging/pathology , Animals , Dentate Gyrus/pathology , Female , Mice , Stroke/pathology
13.
Gut Microbes ; 12(1): 1-14, 2020 11 09.
Article in English | MEDLINE | ID: mdl-32897773

ABSTRACT

Aging is associated with cognitive decline and decreased concentrations of short-chain fatty acids (SCFAs) in the gut. SCFAs are significant in that they are protective to the gut and other organs. We tested the hypothesis that the aged gut microbiome alone is sufficient to decrease SCFAs in the host and produce cognitive decline. Fecal transplant gavages (FTGs) from aged (18-20 months) or young (2-3 months) male C57BL/6 mice into germ-free male C57BL/6 mice (N = 11 per group) were initiated at ~3 months of age. Fecal samples were collected and behavioral testing was performed over the study period. Bacterial community structures and relative abundances were measured in fecal samples by sequencing the bacterial 16S ribosomal RNA gene. Mice with aged and young microbiomes showed clear differences in bacterial ß diversity at 30, 60, and 90 d (P = .001 for each) after FTGs. The fecal SCFAs, acetate, propionate, and butyrate (microbiome effect, P < .01 for each) were decreased in mice with an aged microbiome. Mice with an aged microbiome demonstrated depressive-like behavior, impaired short-term memory, and impaired spatial memory over the 3 months following the initial FTG as assessed by the tail suspension (P = .008), the novel object recognition (P < .001), and the Barnes Maze (P = .030) tests, respectively. We conclude that an aged microbiome alone is sufficient to decrease SCFAs in the host and to produce cognitive decline.


Subject(s)
Aging , Cognition , Cognitive Dysfunction/therapy , Fatty Acids, Volatile/metabolism , Fecal Microbiota Transplantation , Gastrointestinal Microbiome/physiology , Animals , Bacteria/classification , Bacteria/growth & development , Brain/immunology , Cognitive Dysfunction/etiology , Cytokines/blood , Depression , Fatty Acids, Volatile/analysis , Feces/chemistry , Feces/microbiology , Germ-Free Life , Leukocytes/immunology , Male , Memory , Mice , Mice, Inbred C57BL , T-Lymphocyte Subsets/immunology
14.
Curr Neurovasc Res ; 17(4): 495-501, 2020.
Article in English | MEDLINE | ID: mdl-32819258

ABSTRACT

BACKGROUND: Stroke is a major cause of death and disability worldwide. Among its complications, post-stroke depression (PSD) leads to a significant burden. The diagnosis of PSD is complex, and there are no biomarkers that can assist in its early identification and adequate management. OBJECTIVE: The aim of the present study is to investigate peripheral biomarkers in the acute phase of stroke and their potential association with depressive symptoms. METHODS: We evaluated 60 patients in the acute phase of stroke by using standardized instruments of psychiatric and neurological assessment (Mini International Neuropsychiatric Interview-Plus- MINI-Plus, Hospital Anxiety and Depression Scale-HADS, and National Institutes of Health Stroke Scale-NIHSS) and measured peripheral biomarkers. RESULTS: In multivariate analysis, low peripheral levels of soluble triggering receptor expressed on myeloid cells-1 (sTREM-1) and higher NIHSS scores were associated with PSD. The severity of depressive symptoms was inversely correlated with sTREM-1 and glial cell-derived neurotrophic factor (GDNF) levels. CONCLUSION: This is the first study indicating an association between sTREM-1 and PSD. Our results may point to the involvement of glial mechanisms in the manifestation of depressive symptoms after stroke.


Subject(s)
Depression/blood , Depression/diagnosis , Glial Cell Line-Derived Neurotrophic Factor/blood , Stroke/blood , Stroke/diagnosis , Triggering Receptor Expressed on Myeloid Cells-1/blood , Aged , Biomarkers/blood , Cross-Sectional Studies , Depression/etiology , Female , Humans , Male , Middle Aged , Psychiatric Status Rating Scales , Stroke/complications
15.
Circ Res ; 127(4): 453-465, 2020 07 31.
Article in English | MEDLINE | ID: mdl-32354259

ABSTRACT

RATIONALE: The elderly experience profound systemic responses after stroke, which contribute to higher mortality and more severe long-term disability. Recent studies have revealed that stroke outcomes can be influenced by the composition of gut microbiome. However, the potential benefits of manipulating the gut microbiome after injury is unknown. OBJECTIVE: To determine if restoring youthful gut microbiota after stroke aids in recovery in aged subjects, we altered the gut microbiome through young fecal transplant gavage in aged mice after experimental stroke. Further, the effect of direct enrichment of selective bacteria producing short-chain fatty acids (SCFAs) was tested as a more targeted and refined microbiome therapy. METHODS AND RESULTS: Aged male mice (18-20 months) were subjected to ischemic stroke by middle cerebral artery occlusion. We performed fecal transplant gavage 3 days after middle cerebral artery occlusion using young donor biome (2-3 months) or aged biome (18-20 months). At day 14 after stroke, aged stroke mice receiving young fecal transplant gavage had less behavioral impairment, and reduced brain and gut inflammation. Based on data from microbial sequencing and metabolomics analysis demonstrating that young fecal transplants contained much higher SCFA levels and related bacterial strains, we selected 4 SCFA-producers (Bifidobacterium longum, Clostridium symbiosum, Faecalibacterium prausnitzii, and Lactobacillus fermentum) for transplantation. These SCFA-producers alleviated poststroke neurological deficits and inflammation, and elevated gut, brain and plasma SCFA concentrations in aged stroke mice. CONCLUSIONS: This is the first study suggesting that the poor stroke recovery in aged mice can be reversed via poststroke bacteriotherapy following the replenishment of youthful gut microbiome via modulation of immunologic, microbial, and metabolomic profiles in the host.


Subject(s)
Fatty Acids, Volatile/biosynthesis , Fecal Microbiota Transplantation , Gastrointestinal Microbiome/physiology , Infarction, Middle Cerebral Artery/therapy , Ischemic Stroke/therapy , Age Factors , Animals , Bifidobacterium longum/metabolism , Brain Chemistry , Clostridium symbiosum/metabolism , Faecalibacterium prausnitzii/metabolism , Fatty Acids, Volatile/analysis , Fatty Acids, Volatile/blood , Feces/chemistry , Interleukin-17/biosynthesis , Intestines/chemistry , Intraepithelial Lymphocytes/physiology , Limosilactobacillus fermentum/metabolism , Male , Mice , Mucin-2/metabolism , Mucin-4/metabolism , T-Lymphocytes, Regulatory/physiology
16.
Front Neurol ; 10: 778, 2019.
Article in English | MEDLINE | ID: mdl-31379727

ABSTRACT

Background: Stroke is the second leading cause of death after ischemic heart disease and the third leading cause of disability-adjusted life-years lost worldwide. There is a great need for developing more effective strategies to treat stroke and its resulting impairments. Among several neuroprotective strategies tested so far, the kynurenine pathway (KP) seems to be promising, but the evidence is still sparse. Methods: Here, we performed a systematic review of preclinical and clinical studies evaluating the involvement of KP in stroke. We searched for the keywords: ("kynurenine" or "kynurenic acid" or "quinolinic acid") AND ("ischemia" or "stroke" or "occlusion) in the electronic databases PubMed, Scopus, and Embase. A total of 1,130 papers was initially retrieved. Results: After careful screening, forty-five studies were included in this systematic review, being 39 pre-clinical and six clinical studies. Despite different experimental models of cerebral ischemia, the results are concordant in implicating the KP in the pathophysiology of stroke. Preclinical evidence also suggests that treatment with kynurenine and KMO inhibitors decrease infarct size and improve behavioral and cognitive outcomes. Few studies have investigated the KP in human stroke, and results are consistent with the experimental findings that the KP is activated after stroke. Conclusion: Well-designed preclinical studies addressing the expression of KP enzymes and metabolites in specific cell types and their potential effects at cellular levels alongside more clinical studies are warranted to confirm the translational potential of this pathway as a pharmacological target for stroke and related complications.

17.
Behav Brain Res ; 369: 111931, 2019 09 02.
Article in English | MEDLINE | ID: mdl-31047922

ABSTRACT

Neonatal hypoxic ischemia encephalopathy (HIE) leads to major deficits in language development. While clinically there is a known correlation in the degree of HIE injury and subsequent language disability, there are no treatments beyond speech and language therapy; therefore, experimental studies with a HIE animal model to test new interventions and therapeutics are warranted. Neonatal rodents normally ultrasonically vocalize at postnatal day 7 (PND 7) to PND 14 in response to removal from their mothers. At 6-8 weeks of age juvenile male rodents ultrasonically vocalize in response to exposure to a mature female mouse. Changes in ultrasonic vocalization (USV) production after neonatal brain injury, such ashypoxic ischemia (HI), have not been studied. This study examines the acute and long-term ultrasonic vocalization ability of mice after HI at PND 10. Pups were subjected to HI, sham, or naïve conditions; where in HI and sham surgeries the right common carotid artery was exposed, in the HI this artery was double ligated. The HI and sham pups were then exposed to60minof hypoxia. Naïve pups did not undergo surgery and were subjected to60minof room air. At 3 days following surgery, HI and sham pups vocalize less than nonsurgical naïve controls; yet "juvenile" mice of 6-8 weeks old that underwent HI at PND 10 vocalize less than sham and naïve mice. We conclude that HI injury has significant impact on later adult vocalization.


Subject(s)
Hypoxia-Ischemia, Brain/physiopathology , Vocalization, Animal/physiology , Animals , Animals, Newborn , Brain/metabolism , Brain Injuries/physiopathology , Disease Models, Animal , Hypoxia/metabolism , Hypoxia/physiopathology , Ischemia/metabolism , Male , Mice , Mice, Inbred C57BL , Neurons/metabolism , Ultrasonic Waves
18.
Acta Neuropathol ; 136(1): 89-110, 2018 07.
Article in English | MEDLINE | ID: mdl-29752550

ABSTRACT

The peripheral immune system plays a critical role in aging and in the response to brain injury. Emerging data suggest inflammatory responses are exacerbated in older animals following ischemic stroke; however, our understanding of these age-related changes is poor. In this work, we demonstrate marked differences in the composition of circulating and infiltrating leukocytes recruited to the ischemic brain of old male mice after stroke compared to young male mice. Blood neutrophilia and neutrophil invasion into the brain were increased in aged animals. Relative to infiltrating monocyte populations, brain-invading neutrophils had reduced phagocytic potential, and produced higher levels of reactive oxygen species and extracellular matrix-degrading enzymes (i.e., MMP-9), which were further exacerbated with age. Hemorrhagic transformation was more pronounced in aged versus young mice relative to infarct size. High numbers of myeloperoxidase-positive neutrophils were found in postmortem human brain samples of old (> 71 years) acute ischemic stroke subjects compared to non-ischemic controls. Many of these neutrophils were found in the brain parenchyma. A large proportion of these neutrophils expressed MMP-9 and positively correlated with hemorrhage and hyperemia. MMP-9 expression and hemorrhagic transformation after stroke increased with age. These changes in the myeloid response to stroke with age led us to hypothesize that the bone marrow response to stroke is altered with age, which could be important for the development of effective therapies targeting the immune response. We generated heterochronic bone marrow chimeras as a tool to determine the contribution of peripheral immune senescence to age- and stroke-induced inflammation. Old hosts that received young bone marrow (i.e., Young → Old) had attenuation of age-related reductions in bFGF and VEGF and showed improved locomotor activity and gait dynamics compared to isochronic (Old → Old) controls. Microglia in young heterochronic mice (Old → Young) developed a senescent-like phenotype. After stroke, aged animals reconstituted with young marrow had reduced behavioral deficits compared to isochronic controls, and had significantly fewer brain-infiltrating neutrophils. Increased rates of hemorrhagic transformation were seen in young mice reconstituted with aged bone marrow. This work suggests that age alters the immunological response to stroke, and that this can be reversed by manipulation of the peripheral immune cells in the bone marrow.


Subject(s)
Aging , Cytokines/metabolism , Infarction, Middle Cerebral Artery/immunology , Infarction, Middle Cerebral Artery/physiopathology , Myeloid Cells/pathology , Neutrophils/pathology , Age Factors , Aged , Aged, 80 and over , Animals , Bone Marrow/pathology , Disease Models, Animal , Exploratory Behavior/physiology , Gait Disorders, Neurologic/etiology , Hand Strength/physiology , Hemoglobins/metabolism , Hindlimb Suspension/physiology , Humans , Infarction, Middle Cerebral Artery/pathology , Male , Mice , Middle Aged , Reactive Oxygen Species/metabolism , Tumor Necrosis Factor-alpha/metabolism
19.
Ann Neurol ; 84(1): 23-36, 2018 07.
Article in English | MEDLINE | ID: mdl-29733457

ABSTRACT

OBJECTIVE: Chronic systemic inflammation contributes to the pathogenesis of many age-related diseases. Although not well understood, alterations in the gut microbiota, or dysbiosis, may be responsible for age-related inflammation. METHODS: Using stroke as a disease model, we tested the hypothesis that a youthful microbiota, when established in aged mice, produces positive outcomes following ischemic stroke. Conversely, an aged microbiota, when established in young mice, produces negative outcomes after stroke. Young and aged male mice had either a young or an aged microbiota established by fecal transplant gavage (FTG). Mice were subjected to ischemic stroke (middle cerebral artery occlusion; MCAO) or sham surgery. During the subsequent weeks, mice underwent behavioral testing and fecal samples were collected for 16S ribosomal RNA analysis of bacterial content. RESULTS: We found that the microbiota is altered after experimental stroke in young mice and resembles the biome of uninjured aged mice. In aged mice, the ratio of Firmicutes to Bacteroidetes (F:B), two main bacterial phyla in gut microbiota, increased ∼9-fold (p < 0.001) compared to young. This increased F:B ratio in aged mice is indicative of dysbiosis. Altering the microbiota in young by fecal gavage to resemble that of aged mice (∼6-fold increase in F:B ratio, p < 0.001) increased mortality following MCAO, decreased performance in behavioral testing, and increased cytokine levels. Conversely, altering the microbiota in aged to resemble that of young (∼9-fold decrease in F:B ratio, p < 0.001) increased survival and improved recovery following MCAO. INTERPRETATION: Aged biome increased the levels of systemic proinflammatory cytokines. We conclude that the gut microbiota can be modified to positively impact outcomes from age-related diseases. Ann Neurol 2018;83:23-36.


Subject(s)
Aging , Gastrointestinal Microbiome , Inflammation/microbiology , Stroke/microbiology , Age Factors , Animals , Cytokines/metabolism , Disease Models, Animal , Exploratory Behavior , Fecal Microbiota Transplantation/methods , Inflammation/physiopathology , Mice , Mice, Inbred C57BL , Muscle Strength/physiology , Neurologic Examination , RNA, Ribosomal, 16S/metabolism , Stroke/physiopathology
20.
Brain Behav Immun ; 66: 302-312, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28751018

ABSTRACT

INTRODUCTION: Acute ischemic injury leads to severe neuronal loss. One of the key mechanisms responsible for this effect is inflammation, which is characterized by the activation of myeloid cells, including resident microglia and infiltrating monocytes/macrophages. P2X4 receptors (P2X4Rs) present on these immune cells modulate the inflammatory response. For example, excessive release of adenosine triphosphate during acute ischemic stroke triggers stimulation of P2X4Rs, leading to myeloid cell activation and proliferation and further exacerbating post-ischemic inflammation. In contrast, during recovery P2X4Rs activation on microglia leads to the release of brain-derived neurotrophic factor (BDNF), which alleviate depression, maintain synaptic plasticity and hasten post-stroke behavioral recovery. Therefore, we hypothesized that deletion of the P2X4R specifically from myeloid cells would have differential effects on acute versus chronic recovery following stroke. METHODS: We subjected global or myeloid-specific (MS) P2X4R knock-out (KO) mice and wild-type littermates of both sexes to right middle cerebral artery occlusion (60min). We performed histological, behavioral (sensorimotor and depressive), and biochemical (quantitative PCR and flow cytometry) analyses to determine the acute (three days after occlusion) and chronic (30days after occlusion) effects of receptor deletion. RESULTS: Global P2X4R deletion led to reduced infarct size in both sexes. In MS P2X4R KO mice, only females showed reduced infarct size, an effect that did not change with ovariectomy. MS P2X4R KO mice of both sexes showed swift recovery from sensorimotor deficits during acute recovery but exhibited a more pronounced post-stroke depressive behavior phenotype that was independent of infarct size. Quantitative PCR analysis of whole cell lysate as well as flow-sorted myeloid cells from the perilesional cortex showed increased cellular interleukin 1 beta (IL-1ß), interleukin 6 (IL-6), and tumor necrosis factor alpha (TNF-α) mRNA levels but reduced plasma levels of these cytokines in MS P2X4R KO mice after stroke. The expression levels of BDNF and other depression-associated genes were reduced in MS P2X4R KO mice after stroke. CONCLUSIONS: P2X4R deletion protects against stroke acutely but predisposes to depression-like behavior chronically after stroke. Thus, a time-sensitive approach should be considered when targeting P2X4Rs after stroke.


Subject(s)
Brain Ischemia/metabolism , Brain Ischemia/pathology , Brain/metabolism , Depression/complications , Receptors, Purinergic P2X4/physiology , Stroke/metabolism , Stroke/pathology , Animals , Behavior, Animal , Brain/pathology , Brain Ischemia/complications , Cytokines/metabolism , Depression/genetics , Female , Inflammation Mediators/metabolism , Male , Mice , Mice, Knockout , Microglia/pathology , Phenotype , RNA, Messenger/metabolism , Receptors, Purinergic P2X4/genetics , Receptors, Purinergic P2X4/metabolism , Recovery of Function , Stroke/complications
SELECTION OF CITATIONS
SEARCH DETAIL