Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 99
Filter
Add more filters










Publication year range
1.
ACS Infect Dis ; 9(10): 1964-1980, 2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37695781

ABSTRACT

We discovered dibenzannulated medium-ring keto lactams (11,12-dihydro-5H-dibenzo[b,g]azonine-6,13-diones) as a new antimalarial chemotype. Most of these had chromatographic LogD7.4 values ranging from <0 to 3 and good kinetic solubilities (12.5 to >100 µg/mL at pH 6.5). The more polar compounds in the series (LogD7.4 values of <2) had the best metabolic stability (CLint values of <50 µL/min/mg protein in human liver microsomes). Most of the compounds had relatively low cytotoxicity, with IC50 values >30 µM, and there was no correlation between antiplasmodial activity and cytotoxicity. The four most potent compounds had Plasmodium falciparum IC50 values of 4.2 to 9.4 nM and in vitro selectivity indices of 670 to >12,000. They were more than 4 orders-of-magnitude less potent against three other protozoal pathogens (Trypanosoma brucei rhodesiense, Trypanosoma cruzi, and Leishmania donovani) but did have relatively high potency against Toxoplasma gondii, with IC50 values ranging from 80 to 200 nM. These keto lactams are converted into their poorly soluble 4(1H)-quinolone transannular condensation products in vitro in culture medium and in vivo in mouse blood. The similar antiplasmodial potencies of three keto lactam-quinolone pairs suggest that the quinolones likely contribute to the antimalarial activity of the lactams.


Subject(s)
Antimalarials , Quinolones , Trypanosoma cruzi , Mice , Animals , Humans , Antimalarials/pharmacology , Antimalarials/chemistry , Lactams , Trypanosoma brucei rhodesiense
2.
ACS Infect Dis ; 9(3): 643-652, 2023 03 10.
Article in English | MEDLINE | ID: mdl-36794836

ABSTRACT

Praziquantel, the only drug in clinical use for the treatment and control of schistosomiasis, is inactive against developing infections. Ozonides are synthetic peroxide derivatives inspired by the naturally occurring artemisinin and show particularly promising activity against juvenile schistosomes. We conducted an in-depth characterization of the in vitro and in vivo antischistosomal activity and pharmacokinetics of lead ozonide carboxylic acid OZ418 and four of its active analogs. In vitro, the ozonides featured rapid and consistent activity against schistosomula and adult schistosomes at double-digit micromolar EC50 values. Potency did not vary considerably between Schistosoma spp. The zwitterionic OZ740 and OZ772 were more active in vivo compared to their non-amphoteric carboxylic acids OZ418 and OZ748, despite their much lower systemic plasma exposure (AUC). The most active compound in vivo was ethyl ester OZ780, which was rapidly transformed to its parent zwitterion OZ740 and achieved ED50 values of 35 ± 2.4 and 29 ± 2.4 mg/kg against adult and juvenile Schistosoma mansoni, respectively. Ozonide carboxylic acids represent promising candidates for further optimization and development due to their good efficacy against both life stages together with their broad activity range against all relevant parasite species.


Subject(s)
Heterocyclic Compounds , Schistosomiasis , Animals , Carboxylic Acids , Schistosoma mansoni , Schistosomiasis/drug therapy
3.
Biometals ; 36(2): 315-320, 2023 04.
Article in English | MEDLINE | ID: mdl-35229216

ABSTRACT

Despite advances in chemotherapeutic interventions for the treatment of malaria, there is a continuing need for the development of new antimalarial agents. Previous studies indicated that co-administration of chloroquine with antioxidants such as the iron chelator deferoxamine (DFO) prevented the development of persistent cognitive damage in surrogate models of cerebral malaria. The work described herein reports the syntheses and antimalarial activities of covalent conjugates of both natural (siderophores) and artificial iron chelators, namely DFO, ferricrocin and ICL-670, with antimalarial 1,2,4-trioxolanes (ozonides). All of the synthesized conjugates had potent antimalarial activities against the in vitro cultures of drug resistant and drug sensitive strains of Plasmodium falciparum. The work described herein provides the basis for future development of covalent combination of iron chelators and antimalarial chemotherapeutic agents for the treatment of cerebral malaria.


Subject(s)
Antimalarials , Malaria, Cerebral , Humans , Antimalarials/pharmacology , Antimalarials/therapeutic use , Siderophores/pharmacology , Malaria, Cerebral/drug therapy , Amides , Esters , Iron Chelating Agents/pharmacology , Iron Chelating Agents/therapeutic use
4.
ACS Omega ; 7(14): 12401-12411, 2022 Apr 12.
Article in English | MEDLINE | ID: mdl-35449901

ABSTRACT

The catechol derivative RC-12 (WR 27653) (1) is one of the few non-8-aminoquinolines with good activity against hypnozoites in the gold-standard Plasmodium cynomolgi-rhesus monkey (Macaca mulatta) model, but in a small clinical trial, it had no efficacy against Plasmodium vivax hypnozoites. In an attempt to better understand the pharmacokinetic and pharmacodynamic profile of 1 and to identify potential active metabolites, we now describe the phase I metabolism, rat pharmacokinetics, and in vitro liver-stage activity of 1 and its metabolites. Compound 1 had a distinct metabolic profile in human vs monkey liver microsomes, and the data suggested that the O-desmethyl, combined O-desmethyl/N-desethyl, and N,N-didesethyl metabolites (or a combination thereof) could potentially account for the superior liver stage antimalarial efficacy of 1 in rhesus monkeys vs that seen in humans. Indeed, the rate of metabolism was considerably lower in human liver microsomes in comparison to rhesus monkey microsomes, as was the formation of the combined O-desmethyl/N-desethyl metabolite, which was the only metabolite tested that had any activity against liver-stage P. vivax; however, it was not consistently active against liver-stage P. cynomolgi. As 1 and all but one of its identified Phase I metabolites had no in vitro activity against P. vivax or P. cynomolgi liver-stage malaria parasites, we suggest that there may be additional unidentified active metabolites of 1 or that the exposure of 1 achieved in the reported unsuccessful clinical trial of this drug candidate was insufficient to kill the P. vivax hypnozoites.

5.
Sci Transl Med ; 14(633): eabj3860, 2022 02 23.
Article in English | MEDLINE | ID: mdl-35196022

ABSTRACT

A search for alternative Mycobacterium abscessus treatments led to our interest in the two-component regulator DosRS, which, in Mycobacterium tuberculosis, is required for the bacterium to establish a state of nonreplicating, drug-tolerant persistence in response to a variety of host stresses. We show here that the genetic disruption of dosRS impairs the adaptation of M. abscessus to hypoxia, resulting in decreased bacterial survival after oxygen depletion, reduced tolerance to a number of antibiotics in vitro and in vivo, and the inhibition of biofilm formation. We determined that three antimalarial drugs or drug candidates, artemisinin, OZ277, and OZ439, can target DosS-mediated hypoxic signaling in M. abscessus and recapitulate the phenotypic effects of genetically disrupting dosS. OZ439 displayed bactericidal activity comparable to standard-of-care antibiotics in chronically infected mice, in addition to potentiating the activity of antibiotics used in combination. The identification of antimalarial drugs as potent inhibitors and adjunct inhibitors of M. abscessus in vivo offers repurposing opportunities that could have an immediate impact in the clinic.


Subject(s)
Antimalarials , Mycobacterium Infections, Nontuberculous , Mycobacterium abscessus , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Antimalarials/pharmacology , Antimalarials/therapeutic use , Mice , Microbial Sensitivity Tests , Mycobacterium Infections, Nontuberculous/drug therapy , Mycobacterium Infections, Nontuberculous/microbiology , Mycobacterium abscessus/physiology
6.
Bioorg Med Chem Lett ; 59: 128546, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35031451

ABSTRACT

We discovered tetrahydro-γ-carboline sulfonamides as a new antischistosomal chemotype. The aryl sulfonamide and tetrahydro-γ-carboline substructures were required for high antischistosomal activity. Increasing polarity improved solubility and metabolic stability but decreased antischistosomal activity. We identified two compounds with IC50 values <5 µM against ex vivo Schistosoma mansoni.


Subject(s)
Carbolines/pharmacology , Schistosoma mansoni/drug effects , Sulfonamides/pharmacology , Animals , Carbolines/chemical synthesis , Carbolines/chemistry , Dose-Response Relationship, Drug , Molecular Structure , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Sulfonamides/chemistry
7.
ACS Infect Dis ; 8(1): 210-226, 2022 01 14.
Article in English | MEDLINE | ID: mdl-34985858

ABSTRACT

Plasmodium falciparum causes the most lethal form of malaria. Peroxide antimalarials based on artemisinin underpin the frontline treatments for malaria, but artemisinin resistance is rapidly spreading. Synthetic peroxide antimalarials, known as ozonides, are in clinical development and offer a potential alternative. Here, we used chemoproteomics to investigate the protein alkylation targets of artemisinin and ozonide probes, including an analogue of the ozonide clinical candidate, artefenomel. We greatly expanded the list of proteins alkylated by peroxide antimalarials and identified significant enrichment of redox-related proteins for both artemisinins and ozonides. Disrupted redox homeostasis was confirmed by dynamic live imaging of the glutathione redox potential using a genetically encoded redox-sensitive fluorescence-based biosensor. Targeted liquid chromatography-mass spectrometry (LC-MS)-based thiol metabolomics also confirmed changes in cellular thiol levels. This work shows that peroxide antimalarials disproportionately alkylate proteins involved in redox homeostasis and that disrupted redox processes are involved in the mechanism of action of these important antimalarials.


Subject(s)
Antimalarials , Antimalarials/pharmacology , Erythrocytes , Homeostasis , Oxidation-Reduction , Peroxides , Plasmodium falciparum
8.
Bioorg Med Chem ; 46: 116368, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34433102

ABSTRACT

The peroxisome proliferator-activated receptor gamma (PPARγ) was identified as an oncogene and it plays a key role in prostate cancer (PC) development and progression. PPARγ antagonists have been shown to inhibit PC cell growth. Herein, we describe a virtual screening-based approach that led to the discovery of novel PPARγ antagonist chemotypes that bind at the allosteric pocket. Arg288, Lys367, and His449 appear to be important for PPARγ antagonist binding.


Subject(s)
Antineoplastic Agents/pharmacology , PPAR gamma/antagonists & inhibitors , Prostatic Neoplasms/drug therapy , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Drug Screening Assays, Antitumor , Humans , Male , Molecular Structure , PPAR gamma/metabolism , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Structure-Activity Relationship , Tumor Cells, Cultured
9.
ACS Infect Dis ; 7(7): 1885-1893, 2021 07 09.
Article in English | MEDLINE | ID: mdl-34101429

ABSTRACT

OZ439 is a potent synthetic ozonide evaluated for the treatment of uncomplicated malaria. The metabolite profile of OZ439 was characterized in vitro using human liver microsomes combined with LC/MS-MS, chemical derivatization, and metabolite synthesis. The primary biotransformations were monohydroxylation at the three distal carbon atoms of the spiroadamantane substructure, with minor contributions from N-oxidation of the morpholine nitrogen and deethylation cleavage of the morpholine ring. Secondary transformations resulted in the formation of dihydroxylation metabolites and metabolites containing both monohydroxylation and morpholine N-oxidation. With the exception of two minor metabolites, none of the other metabolites had appreciable antimalarial activity. Reaction phenotyping indicated that CYP3A4 is the enzyme responsible for the metabolism of OZ439, and it was found to inhibit CYP3A via both direct and mechanism-based inhibition. Elucidation of the metabolic pathways and kinetics will assist with efforts to predict potential metabolic drug-drug interactions and support physiologically based pharmacokinetic (PBPK) modeling.


Subject(s)
Antimalarials , Cytochrome P-450 CYP3A , Cytochrome P-450 Enzyme System , Humans , Microsomes, Liver , Peroxides
10.
ACS Infect Dis ; 7(6): 1578-1583, 2021 06 11.
Article in English | MEDLINE | ID: mdl-33971090

ABSTRACT

We now describe the physicochemical profiling, in vitro ADME, and antiparasitic activity of eight N,N'-diarylureas to assess their potential as a broad-spectrum antiprotozoal chemotype. Chromatographic LogD7.4 values ranged from 2.5 to 4.5; kinetic aq. solubilities were ≤6.3 µg/mL, and plasma protein binding ranged from 95 to 99%. All of the compounds had low intrinsic clearance values in human, but not mouse, liver microsomes. Although no N,N'-diarylurea had submicromolar potency against Trypanosoma cruzi, two had submicromolar potencies against Toxoplasma gondii and Trypanosoma brucei rhodesiense, and five had submicromolar potencies against Leishmania donovani. Plasmodium falciparum appeared to be the most susceptible to growth inhibition by this compound series. Most of the N,N'-diarylureas had antiprotozoal selectivities ≥10. One N,N'-diarylurea had demonstrable activity in mouse models of malaria and toxoplasmosis.


Subject(s)
Antiprotozoal Agents , Leishmania donovani , Trypanosoma cruzi , Animals , Antiprotozoal Agents/pharmacology , Mice , Trypanosoma brucei rhodesiense , Urea
11.
Article in English | MEDLINE | ID: mdl-33361291

ABSTRACT

Toxoplasma gondii is a globally distributed apicomplexan parasite and the causative agent of toxoplasmosis in humans. While pharmaceuticals exist to combat acute infection, they can produce serious adverse reactions, demonstrating a need for enhanced therapies. KG8 is a benzoquinone acyl hydrazone chemotype identified from a previous chemical screen for which we previously showed in vitro and in vivo efficacy against T. gondii However, the genetic target and mechanism of action of KG8 remain unknown. To investigate potential targets, we generated resistant T. gondii lines by chemical mutagenesis followed by in vitro selection. Whole-genome sequencing of resistant clones revealed a P207S mutation in the gene encoding rhoptry organelle protein 1 (ROP1) in addition to two lesser resistance-conferring mutations in the genes for rhoptry organelle protein 8 (ROP8) and a putative ADP/ATP carrier protein (TGGT1_237700). Expressing ROP1P207S in parental parasites was sufficient to confer significant (10.3-fold increased half-maximal effective concentration [EC50]) KG8 resistance. After generating a library of mutants carrying hypermutated rop1 alleles followed by KG8 pressure, we sequenced the most resistant clonal isolate (>16.9-fold increased EC50) and found independent recapitulation of the P207S mutation, along with three additional mutations in the same region. We also demonstrate that a rop1 knockout strain is insensitive to KG8. These data implicate ROP1 as a putative resistance gene of KG8. This work further identifies a compound that can be used in future studies to better understand ROP1 function and highlights this novel chemotype as a potential scaffold for the development of improved T. gondii therapeutics.


Subject(s)
Toxoplasma , Benzoquinones , Humans , Hydrazones , Membrane Proteins , Organelles , Protozoan Proteins/genetics , Toxoplasma/genetics
12.
J Antimicrob Chemother ; 75(10): 2925-2932, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32617557

ABSTRACT

BACKGROUND: Treatment of schistosomiasis, a neglected disease, relies on just one partially effective drug, praziquantel. We revisited the 9-acridanone hydrazone, Ro 15-5458, a largely forgotten antischistosomal lead compound. METHODS: Ro 15-5458 was evaluated in juvenile and adult Schistosoma mansoni-infected mice. We studied dose-response, hepatic shift and stage specificity. The metabolic stability of Ro 15-5458 was measured in the presence of human and mouse liver microsomes, and human hepatocytes; the latter also served to identify metabolites. Pharmacokinetic parameters were measured in naive mice. The efficacy of Ro 15-5458 was also assessed in S. haematobium-infected hamsters and S. japonicum-infected mice. RESULTS: Ro 15-5458 had single-dose ED50 values of 15 and 5.3 mg/kg in mice harbouring juvenile and adult S. mansoni infections, respectively. An ED50 value of 17 mg/kg was measured in S. haematobium-infected hamsters; however, the compound was inactive at up to 100 mg/kg in S. japonicum-infected mice. The drug-induced hepatic shift occurred between 48 and 66 h post treatment. A single oral dose of 50 mg/kg of Ro 15-5458 had high activity against all tested S. mansoni stages (1-, 7-, 14-, 21- and 49-day-old). In vitro, human hepatocytes produced N-desethyl and glucuronide metabolites; otherwise Ro 15-5458 was metabolically stable in the presence of microsomes or whole hepatocytes. The maximum plasma concentration was approximately 8.13 µg/mL 3 h after a 50 mg/kg oral dose and the half-life was approximately 4.9 h. CONCLUSIONS: Ro 15-5458 has high activity against S. mansoni and S. haematobium, yet lacks activity against S. japonicum, which is striking. This will require further investigation, as a broad-spectrum antischistosomal drug is desirable.


Subject(s)
Schistosomiasis mansoni , Schistosomicides , Acridines , Animals , Cricetinae , Hydrazones/therapeutic use , Mice , Schistosoma mansoni , Schistosomiasis mansoni/drug therapy , Schistosomicides/therapeutic use
13.
ACS Infect Dis ; 6(5): 1169-1181, 2020 05 08.
Article in English | MEDLINE | ID: mdl-32233506

ABSTRACT

EP67 is a second-generation, human C5a-derived decapeptide agonist of C5a receptor 1 (C5aR1/CD88) that selectively activates mononuclear phagocytes over neutrophils to potentiate protective innate and adaptive immune responses while potentially minimizing neutrophil-mediated toxicity. Pro7 and N-methyl-Leu8 (Me-Leu8) amino acid residues within EP67 likely induce backbone structural changes that increase potency and selective activation of mononuclear phagocytes over neutrophils versus first-generation EP54. The low coupling efficiency between Pro7 and Me-Leu8 and challenging purification by HPLC, however, greatly increase scale-up costs of EP67 for clinical use. Thus, the goal of this study was to determine whether replacing Pro7 and/or Me-Leu8 with large-scale amenable amino acid residues predicted to induce similar structural changes (cyclohexylalanine7 and/or leucine8) sufficiently preserves EP67 activity in primary human mononuclear phagocytes and neutrophils. We found that EP67 analogues had similar potency, efficacy, and selective activation of mononuclear phagocytes over neutrophils. Thus, replacing Pro7 and/or Me-Leu8 with large-scale amenable amino acid residues predicted to induce similar structural changes is a suitable strategy to overcome scale-up challenges with EP67.


Subject(s)
Adjuvants, Immunologic/chemistry , Complement C5a , Oligopeptides/chemistry , Amino Acid Substitution , Humans
14.
J Med Chem ; 63(7): 3723-3736, 2020 04 09.
Article in English | MEDLINE | ID: mdl-32134263

ABSTRACT

Semisynthetic artemisinins and other bioactive peroxides are best known for their powerful antimalarial activities, and they also show substantial activity against schistosomes-another hemoglobin-degrading pathogen. Building on this discovery, we now describe the initial structure-activity relationship (SAR) of antischistosomal ozonide carboxylic acids OZ418 (2) and OZ165 (3). Irrespective of lipophilicity, these ozonide weak acids have relatively low aqueous solubilities and high protein binding values. Ozonides with para-substituted carboxymethoxy and N-benzylglycine substituents had high antischistosomal efficacies. It was possible to increase solubility, decrease protein binding, and maintain the high antischistosomal activity in mice infected with juvenile and adult Schistosoma mansoni by incorporating a weak base functional group in these compounds. In some cases, adding polar functional groups and heteroatoms to the spiroadamantane substructure increased the solubility and metabolic stability, but in all cases decreased the antischistosomal activity.


Subject(s)
Adamantane/therapeutic use , Carboxylic Acids/therapeutic use , Heterocyclic Compounds, 1-Ring/therapeutic use , Schistosomicides/therapeutic use , Spiro Compounds/therapeutic use , Adamantane/analogs & derivatives , Adamantane/pharmacokinetics , Adamantane/toxicity , Animals , Carboxylic Acids/chemical synthesis , Carboxylic Acids/pharmacokinetics , Carboxylic Acids/toxicity , Cell Line, Tumor , Female , HEK293 Cells , Heterocyclic Compounds, 1-Ring/chemical synthesis , Heterocyclic Compounds, 1-Ring/pharmacokinetics , Heterocyclic Compounds, 1-Ring/toxicity , Humans , Mice , Molecular Structure , Parasitic Sensitivity Tests , Schistosoma mansoni/drug effects , Schistosomiasis mansoni/drug therapy , Schistosomicides/chemical synthesis , Schistosomicides/pharmacokinetics , Schistosomicides/toxicity , Spiro Compounds/chemical synthesis , Spiro Compounds/pharmacokinetics , Spiro Compounds/toxicity , Structure-Activity Relationship
15.
Bioorg Med Chem ; 28(7): 115395, 2020 04 01.
Article in English | MEDLINE | ID: mdl-32113844

ABSTRACT

Glucose transporters (GLUTs) regulate glucose uptake and are often overexpressed in several human tumors. To identify new chemotypes targeting GLUT1, we built a pharmacophore model and searched against a NCI compound database. Sixteen hit molecules with good docking scores were screened for GLUT1 inhibition and antiproliferative activities. From these, we identified that compounds 2, 5, 6 and 13 inhibited the cell viability in a dose-dependent manner and that the IC50s of 2 and 6 are<10 µM concentration in the HCT116 colon cancer cell line. Lead compound 13 (NSC295720) was a GLUT1 inhibitor. Docking studies show that GLUT1 residues Phe291, Phe379, Glu380, Trp388, and Trp412 were important for inhibitor binding.


Subject(s)
Antineoplastic Agents/pharmacology , Cell Proliferation/drug effects , Drug Design , Glucose Transporter Type 1/antagonists & inhibitors , Antineoplastic Agents/chemistry , Databases, Chemical , HCT116 Cells , Humans , Ligands , Molecular Docking Simulation , Protein Binding , Structure-Activity Relationship
16.
J Org Chem ; 85(4): 2846-2853, 2020 02 21.
Article in English | MEDLINE | ID: mdl-31904963

ABSTRACT

1-Substituted and 1,1-disubstituted tetrahydro-ß-carbolines undergo sodium periodate oxidative ring expansion in the presence of formaldehyde and other aldehydes to form 5,6-dihydro-7H-1,4-methanobenzo[e][1,4]diazonine-2,7(3H)-diones in 30-81% yield. In most cases, the reaction to form this new 6/8/5-tricyclic ring system proceeds with high diastereoselectivity. These benzannulated medium-ring keto imidazolidin-4-ones expand the menu of tetrahydro-ß-carboline oxidation products.


Subject(s)
Aldehydes , Carbolines , Oxidation-Reduction
17.
Bioorg Med Chem Lett ; 30(1): 126778, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31706668

ABSTRACT

Pyridyl benzamide 2 is a potent inhibitor of Trypanosoma cruzi, but not other protozoan parasites, and had a selectivity-index of ≥10. The initial structure-activity relationship (SAR) indicates that benzamide and sulfonamide functional groups, and N-methylpiperazine and sterically unhindered 3-pyridyl substructures are required for high activity against T. cruzi. Compound 2 and its active analogs had low to moderate metabolic stabilities in human and mouse liver microsomes.


Subject(s)
Chagas Disease/drug therapy , Trypanocidal Agents/therapeutic use , Trypanosoma cruzi/drug effects , Animals , Humans , Structure-Activity Relationship , Trypanocidal Agents/pharmacology
18.
ACS Infect Dis ; 5(12): 2076-2086, 2019 12 13.
Article in English | MEDLINE | ID: mdl-31622078

ABSTRACT

The mechanism of action of ozonide antimalarials involves activation by intraparasitic iron and the formation of highly reactive carbon-centered radicals that alkylate malaria parasite proteins. Given free intraparasitic heme is generally thought to be the iron source responsible for ozonide activation and its likely close proximity to the activated drug, we investigated heme as a possible molecular target of the ozonides. Using an extraction method optimized for solubilization of free heme, untargeted LC-MS analysis of ozonide-treated parasites identified several regioisomers of ozonide-alkylated heme, which resulted from covalent modification of the heme porphyrin ring by an ozonide-derived carbon-centered radical. In addition to the intact alkylated heme adduct, putative ozonide-alkylated heme degradation products were also detected. This study directly demonstrates ozonide modification of heme within the malaria parasite Plasmodium falciparum, revealing that this process may be important for the biological activity of ozonide antimalarials.


Subject(s)
Antimalarials/pharmacology , Heme/chemistry , Heterocyclic Compounds/pharmacology , Plasmodium falciparum/drug effects , Alkylation , Chromatography, Liquid , Heterocyclic Compounds/chemistry , Mass Spectrometry , Molecular Structure , Plasmodium falciparum/chemistry
19.
ACS Infect Dis ; 5(12): 2067-2075, 2019 12 13.
Article in English | MEDLINE | ID: mdl-31626733

ABSTRACT

Antimalarial peroxides such as the phytochemical artemisinin or the synthetic ozonides arterolane and artefenomel undergo reductive cleavage of the pharmacophoric peroxide bond by ferrous heme, released by parasite hemoglobin digestion. The generated carbon-centered radicals alkylate heme in an intramolecular reaction and proteins in an intermolecular reaction. Here, we determine the proteinaceous alkylation signatures of artemisinin and synthetic ozonides in Plasmodium falciparum using alkyne click chemistry probes to identify target proteins by affinity purification and mass spectrometry-based proteomics. Using stringent controls and purification procedures, we identified 25 P. falciparum proteins that were alkylated by the antimalarial peroxides in a peroxide-dependent manner, but the alkylation patterns were more random than we had anticipated. Moreover, there was little overlap in the alkylation signatures identified in this work and those disclosed in previous studies. Our findings suggest that alkylation of parasite proteins by antimalarial peroxides is likely to be a nonspecific, stochastic process.


Subject(s)
Antimalarials/pharmacology , Peroxides/pharmacology , Plasmodium falciparum/metabolism , Protozoan Proteins/analysis , Alkylation , Antimalarials/chemistry , Artemisinins/pharmacology , Click Chemistry , Heterocyclic Compounds/pharmacology , Mass Spectrometry , Molecular Structure , Plasmodium falciparum/drug effects , Proteomics , Protozoan Proteins/chemistry , Stochastic Processes
20.
Molecules ; 24(11)2019 Jun 07.
Article in English | MEDLINE | ID: mdl-31181707

ABSTRACT

Glucose transporter 1 (GLUT1) is a facilitative glucose transporter overexpressed in various types of tumors; thus, it has been considered as an important target for cancer therapy. GLUT1 works through conformational switching from an outward-open (OOP) to an inward-open (IOP) conformation passing through an occluded conformation. It is critical to determine which conformation is preferred by bound ligands because the success of structure-based drug design depends on the appropriate starting conformation of the target protein. To find out the most favorable GLUT 1 conformation for ligand binding, we ran systemic molecular docking studies for different conformations of GLUT1 using known GLUT1 inhibitors. Our data revealed that the IOP is the preferred conformation and that residues Phe291, Phe379, Glu380, Trp388, and Trp412 may play critical roles in ligand binding to GLUT1. Our data suggests that conformational differences in these five amino acids in the different conformers of GLUT1 may be used to design ligands that inhibit GLUT1.


Subject(s)
Antineoplastic Agents/chemistry , Glucose Transporter Type 1/chemistry , Glucose Transporter Type 1/metabolism , Antineoplastic Agents/pharmacology , Binding Sites , Drug Design , Humans , Ligands , Models, Molecular , Molecular Docking Simulation , Protein Conformation , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...