Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Cell Sci ; 136(15)2023 08 01.
Article in English | MEDLINE | ID: mdl-37439191

ABSTRACT

Abscission is the final stage of cytokinesis whereby the midbody, a thin intercellular bridge, is resolved to separate the daughter cells. Cytokinetic abscission is mediated by the endosomal sorting complex required for transport (ESCRT), a conserved membrane remodelling machinery. The midbody organiser CEP55 recruits early acting ESCRT factors such as ESCRT-I and ALIX (also known as PDCD6IP), which subsequently initiate the formation of ESCRT-III polymers that sever the midbody. We now identify UMAD1 as an ESCRT-I subunit that facilitates abscission. UMAD1 selectively associates with VPS37C and VPS37B, supporting the formation of cytokinesis-specific ESCRT-I assemblies. TSG101 recruits UMAD1 to the site of midbody abscission, to stabilise the CEP55-ESCRT-I interaction. We further demonstrate that the UMAD1-ESCRT-I interaction facilitates the final step of cytokinesis. Paradoxically, UMAD1 and ALIX co-depletion has synergistic effects on abscission, whereas ESCRT-III recruitment to the midbody is not inhibited. Importantly, we find that both UMAD1 and ALIX are required for the dynamic exchange of ESCRT-III subunits at the midbody. Therefore, UMAD1 reveals a key functional connection between ESCRT-I and ESCRT-III that is required for cytokinesis.


Subject(s)
Cytokinesis , Endosomal Sorting Complexes Required for Transport , Endosomal Sorting Complexes Required for Transport/genetics , Cell Cycle Proteins
2.
Dev Cell ; 56(23): 3192-3202.e8, 2021 12 06.
Article in English | MEDLINE | ID: mdl-34818527

ABSTRACT

Transient nuclear envelope ruptures during interphase (NERDI) occur due to cytoskeletal compressive forces at sites of weakened lamina, and delayed NERDI repair results in genomic instability. Nuclear envelope (NE) sealing is completed by endosomal sorting complex required for transport (ESCRT) machinery. A key unanswered question is how local compressive forces are counteracted to allow efficient membrane resealing. Here, we identify the ESCRT-associated protein BROX as a crucial factor required to accelerate repair of the NE. Critically, BROX binds Nesprin-2G, a component of the linker of nucleoskeleton and cytoskeleton complex (LINC). This interaction promotes Nesprin-2G ubiquitination and facilitates the relaxation of mechanical stress imposed by compressive actin fibers at the rupture site. Thus, BROX rebalances excessive cytoskeletal forces in cells experiencing NE instability to promote effective NERDI repair. Our results demonstrate that BROX coordinates mechanoregulation with membrane remodeling to ensure the maintenance of nuclear-cytoplasmic compartmentalization and genomic stability.


Subject(s)
Cell Nucleus/physiology , Cytoskeleton/chemistry , Endosomal Sorting Complexes Required for Transport/metabolism , Microfilament Proteins/metabolism , Nerve Tissue Proteins/metabolism , Nuclear Envelope/physiology , Actins/chemistry , Cell Movement , Endosomal Sorting Complexes Required for Transport/genetics , HeLa Cells , Humans , Mechanical Phenomena , Microfilament Proteins/genetics , Nerve Tissue Proteins/genetics
3.
iScience ; 23(6): 101244, 2020 Jun 26.
Article in English | MEDLINE | ID: mdl-32629610

ABSTRACT

The inheritance of the midbody remnant (MBR) breaks the symmetry of the two daughter cells, with functional consequences for lumen and primary cilium formation by polarized epithelial cells, and also for development and differentiation. However, despite its importance, neither the relationship between the plasma membrane and the inherited MBR nor the mechanism of MBR inheritance is well known. Here, the analysis by correlative light and ultra-high-resolution scanning electron microscopy reveals a membranous stalk that physically connects the MBR to the apical membrane of epithelial cells. The stalk, which derives from the uncleaved side of the midbody, concentrates the ESCRT machinery. The ESCRT CHMP4C subunit enables MBR inheritance, and its depletion dramatically reduces the percentage of ciliated cells. We demonstrate (1) that MBRs are physically connected to the plasma membrane, (2) how CHMP4C helps maintain the integrity of the connection, and (3) the functional importance of the connection.

4.
Nat Chem ; 11(6): 552-561, 2019 06.
Article in English | MEDLINE | ID: mdl-30936521

ABSTRACT

Post-translational farnesylation or geranylgeranylation at a C-terminal cysteine residue regulates the localization and function of over 100 proteins, including the Ras isoforms, and is a therapeutic target in diseases including cancer and infection. Here, we report global and selective profiling of prenylated proteins in living cells enabled by the development of isoprenoid analogues YnF and YnGG in combination with quantitative chemical proteomics. Eighty prenylated proteins were identified in a single human cell line, 64 for the first time at endogenous abundance without metabolic perturbation. We further demonstrate that YnF and YnGG enable direct identification of post-translationally processed prenylated peptides, proteome-wide quantitative analysis of prenylation dynamics and alternative prenylation in response to four different prenyltransferase inhibitors, and quantification of defective Rab prenylation in a model of the retinal degenerative disease choroideremia.


Subject(s)
Alkynes/chemistry , Molecular Probes/chemistry , Protein Prenylation , Proteins/analysis , Proteome/analysis , Proteomics/methods , Adaptor Proteins, Signal Transducing/genetics , Animals , Cell Line , Gene Knockout Techniques , Humans , Mass Spectrometry , Mice, Knockout , Protein Prenylation/drug effects , Proteins/chemistry , Proteome/chemistry
5.
Dev Cell ; 47(5): 547-563.e6, 2018 12 03.
Article in English | MEDLINE | ID: mdl-30513301

ABSTRACT

The coordinated reformation of the nuclear envelope (NE) after mitosis re-establishes the structural integrity and the functionality of the nuclear compartment. The endosomal sorting complex required for transport (ESCRT) machinery, a membrane remodeling pathway that is highly conserved in eukaryotes, has been recently involved in NE resealing by mediating the annular fusion of the nuclear membrane (NM). We show here that CC2D1B, a regulator of ESCRT polymerization, is required to re-establish the nuclear compartmentalization by coordinating endoplasmic reticulum (ER) membrane deposition around chromatin disks with ESCRT-III recruitment to the reforming NE. Accordingly, CC2D1B determines the spatiotemporal distribution of the CHMP7-ESCRT-III axis during NE reformation. Crucially, in CC2D1B-depleted cells, ESCRT activity is uncoupled from Spastin-mediated severing of spindle microtubules, resulting in persisting microtubules that compromise nuclear morphology. Therefore, we reveal CC2D1B as an essential regulatory factor that licenses the formation of ESCRT-III polymers to ensure the orderly reformation of the NE.


Subject(s)
Endosomal Sorting Complexes Required for Transport/metabolism , Mitosis , Nuclear Envelope/metabolism , Repressor Proteins/metabolism , Animals , Cell Line , Chromatin/metabolism , HCT116 Cells , HeLa Cells , Humans , Mice , Microtubules/metabolism , Repressor Proteins/genetics
6.
Front Cell Dev Biol ; 4: 84, 2016.
Article in English | MEDLINE | ID: mdl-27583248

ABSTRACT

Exosomes are a particular type of extracellular vesicle, characterized by their endosomal origin as intraluminal vesicles present in large endosomes with a multivesicular structure. After these endosomes fuse with the plasma membrane, exosomes are secreted into the extracellular space. The ability of exosomes to carry and selectively deliver bioactive molecules (e.g., lipids, proteins, and nucleic acids) confers on them the capacity to modulate the activity of receptor cells, even if these cells are located in distant tissues or organs. Since exosomal cargo depends on cell type, a detailed understanding of the mechanisms that regulate the biochemical composition of exosomes is fundamental to a comprehensive view of exosome function. Here, we review the latest advances concerning exosome function and biogenesis in T cells, with particular focus on the mechanism of protein sorting at multivesicular endosomes. Exosomes secreted by specific T-cell subsets can modulate the activity of immune cells, including other T-cell subsets. Ceramide, tetraspanins and MAL have been revealed to be important in exosome biogenesis by T cells. These molecules, therefore, constitute potential molecular targets for artificially modulating exosome production and, hence, the immune response for therapeutic purposes.

7.
Cell Res ; 26(6): 641-2, 2016 06.
Article in English | MEDLINE | ID: mdl-27151367

ABSTRACT

Rupture of the nuclear envelope (NE) during interphase is thought to be an infrequent event in healthy cells. Two papers recently published in Science describe the transient disruption of the NE continuity in cells migrating through confined spaces, and uncover an essential role for the Endosomal Sorting Complex Required for Transport (ESCRT) machinery in the resealing of these nuclear discontinuities.


Subject(s)
Endosomal Sorting Complexes Required for Transport/genetics , Nuclear Envelope , Cell Death , Cell Movement , DNA Damage
8.
J Immunol ; 195(3): 810-4, 2015 Aug 01.
Article in English | MEDLINE | ID: mdl-26109641

ABSTRACT

Exosomes secreted by T cells play an important role in coordinating the immune response. HIV-1 Nef hijacks the route of exosome secretion of T cells to modulate the functioning of uninfected cells. Despite the importance of the process, the protein machinery involved in exosome biogenesis is yet to be identified. In this study, we show that MAL, a tetraspanning membrane protein expressed in human T cells, is present in endosomes that travel toward the plasma membrane for exosome secretion. In the absence of MAL, the release of exosome particles and markers was greatly impaired. This effect was accompanied by protein sorting defects at multivesicular endosomes that divert the exosomal marker CD63 to autophagic vacuoles. Exosome release induced by HIV-1 Nef was also dependent on MAL expression. Therefore, MAL is a critical element of the machinery for exosome secretion and may constitute a target for modulating exosome secretion by human T cells.


Subject(s)
HIV Infections/immunology , HIV-1/immunology , Multivesicular Bodies/metabolism , Myelin and Lymphocyte-Associated Proteolipid Proteins/metabolism , T-Lymphocytes/immunology , nef Gene Products, Human Immunodeficiency Virus/immunology , Cell Line, Tumor , Cell Membrane/metabolism , Humans , Jurkat Cells , Multivesicular Bodies/immunology , Myelin and Lymphocyte-Associated Proteolipid Proteins/genetics , Tetraspanin 30/immunology
9.
Biochem J ; 454(2): 169-79, 2013 Sep 01.
Article in English | MEDLINE | ID: mdl-23931554

ABSTRACT

Tyrosine phosphorylation is one of the key covalent modifications that occur in multicellular organisms. Since its discovery more than 30 years ago, tyrosine phosphorylation has come to be understood as a fundamentally important mechanism of signal transduction and regulation in all eukaryotic cells. The tyrosine kinase Lck (lymphocyte-specific protein tyrosine kinase) plays a crucial role in the T-cell response by transducing early activation signals triggered by TCR (T-cell receptor) engagement. These signals result in the phosphorylation of immunoreceptor tyrosine-based activation motifs present within the cytosolic tails of the TCR-associated CD3 subunits that, once phosphorylated, serve as scaffolds for the assembly of a large supramolecular signalling complex responsible for T-cell activation. The existence of membrane nano- or micro-domains or rafts as specialized platforms for protein transport and cell signalling has been proposed. The present review discusses the signals that target Lck to membrane rafts and the importance of these specialized membranes in the transport of Lck to the plasma membrane, the regulation of Lck activity and the phosphorylation of the TCR.


Subject(s)
Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism , Membrane Microdomains/metabolism , Models, Biological , Receptors, Antigen, T-Cell/metabolism , Signal Transduction , T-Lymphocytes/metabolism , Animals , Antigen Presentation , Cell Membrane/chemistry , Cell Membrane/metabolism , Humans , Lymphocyte Activation , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/chemistry , Membrane Microdomains/chemistry , Phosphorylation , Protein Processing, Post-Translational , Protein Structure, Tertiary , Protein Transport , Receptors, Antigen, T-Cell/chemistry , T-Lymphocytes/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...