Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
1.
Cell Cycle ; : 1-16, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38836592

ABSTRACT

In chronic liver injury, quiescent hepatic stellate cells (HSCs) transdifferentiate into activated myofibroblast-like cells and produce large amounts of extracellular matrix components, e.g. collagen type 1. Cellular senescence is characterized by irreversible cell-cycle arrest, arrested cell proliferation and the acquisition of the senescence-associated secretory phenotype (SASP) and reversal of HSCs activation. Previous studies reported that H2S prevents induction of senescence via its antioxidant activity. We hypothesized that inhibition of endogenous H2S production induces cellular senescence and reduces activation of HSCs. Rat HSCs were isolated and culture-activated for 7 days. After activation, HSCs treated with H2S slow-releasing donor GYY4137 and/or DL-propargylglycine (DL-PAG), an inhibitor of the H2S-producing enzyme cystathionine γ-lyase (CTH), as well as the PI3K inhibitor LY294002. In our result, CTH expression was significantly increased in fully activated HSCs compared to quiescent HSCs and was also observed in activated stellate cells in a in vivo model of cirrhosis. Inhibition of CTH reduced proliferation and expression of fibrotic markers Col1a1 and Acta2 in HSCs. Concomitantly, DL-PAG increased the cell-cycle arrest markers Cdkn1a (p21), p53 and the SASP marker Il6. Additionally, the number of ß-galactosidase positive senescent HSCs was increased. GYY4137 partially restored the proliferation of senescent HSCs and attenuated the DL-PAG-induced senescent phenotype. Inhibition of PI3K partially reversed the senescence phenotype of HSCs induced by DL-PAG. Inhibition of endogenous H2S production reduces HSCs activation via induction of cellular senescence in a PI3K-Akt dependent manner. Our results show that cell-specific inhibition of H2S could be a novel target for anti-fibrotic therapy via induced cell senescence.

2.
Biomedicines ; 11(10)2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37893201

ABSTRACT

Chronic kidney disease (CKD) is characterized by renal parenchymal damage leading to a reduction in the glomerular filtration rate. The inflammatory response plays a pivotal role in the tissue damage contributing to renal failure. Current therapeutic options encompass dietary control, mineral salt regulation, and management of blood pressure, blood glucose, and fatty acid levels. However, they do not effectively halt the progression of renal damage. This review critically examines novel therapeutic avenues aimed at ameliorating inflammation, mitigating extracellular matrix accumulation, and fostering renal tissue regeneration in the context of CKD. Understanding the mechanisms sustaining a proinflammatory and profibrotic state may offer the potential for targeted pharmacological interventions. This, in turn, could pave the way for combination therapies capable of reversing renal damage in CKD. The non-replacement phase of CKD currently faces a dearth of efficacious therapeutic options. Future directions encompass exploring vaptans as diuretics to inhibit water absorption, investigating antifibrotic agents, antioxidants, and exploring regenerative treatment modalities, such as stem cell therapy and novel probiotics. Moreover, this review identifies pharmaceutical agents capable of mitigating renal parenchymal damage attributed to CKD, targeting molecular-level signaling pathways (TGF-ß, Smad, and Nrf2) that predominate in the inflammatory processes of renal fibrogenic cells.

3.
Front Cell Infect Microbiol ; 13: 1110600, 2023.
Article in English | MEDLINE | ID: mdl-37260701

ABSTRACT

Entamoeba histolytica (E. histolytica) is a protozoan responsible for intestinal amebiasis in at least 500 million people per year, although only 10% of those infected show severe symptoms. It is known that E. histolytica captures molecules released during the host immune response through membrane receptors that favor its pathogenetic mechanisms for the establishment of amebic invasion. It has been suggested that E. histolytica interacts with acetylcholine (ACh) through its membrane. This promotes the increase of virulence factors and diverse mechanisms carried out by the amoeba to produce damage. The aim of this study is to identify a membrane receptor in E. histolytica trophozoites for ACh. Methods included identification by colocalization for the ACh and Gal/GalNAc lectin binding site by immunofluorescence, western blot, bioinformatic analysis, and quantification of the relative expression of Ras 5 and Rab 7 GTPases by RT-qPCR. Results show that the Gal/GalNAc lectin acts as a possible binding site for ACh and this binding may occur through the 150 kDa intermediate subunit. At the same time, this interaction activates the GTPases, Ras, and Rab, which are involved in the proliferation, and reorganization of the amoebic cytoskeleton and vesicular trafficking. In conclusion, ACh is captured by the parasite, and the interaction promotes the activation of signaling pathways involved in pathogenicity mechanisms, contributing to disease and the establishment of invasive amebiasis.


Subject(s)
Amebiasis , Dysentery, Amebic , Entamoeba histolytica , Humans , Entamoeba histolytica/metabolism , Lectins/metabolism , Receptors, Cholinergic/metabolism , Protozoan Proteins/metabolism , Dysentery, Amebic/parasitology
4.
J Parasitol Res ; 2023: 3713368, 2023.
Article in English | MEDLINE | ID: mdl-37143958

ABSTRACT

Acanthamoeba griffini is known to cause amoebic keratitis (AK); its main causes are inadequate hygiene when contact lenses are handled and/or its prolonged use at night, as well as the use of contact lenses during underwater activities. The most used treatment for AK is the combination of propamidine isethionate combined with polyhexamethylene biguanide, which disrupts the cytoplasmic membrane, and damages cellular components and respiratory enzymes. We proposed an immunoconjugate treatment obtained from Acanthamoeba immunized rabbit serum combined with propamidine isethionate; the corneas of hamsters inoculated with A. griffini (MYP2004) were treated with the combined, at 1, 2, and 3 weeks. Propamidine isethionate is frequently used for AK treatment, in vivo study we are found IL-1ß and IL-10 expression and caspase 3 activity is significantly increased with respect to the group that was inoculated with the amoeba without receiving any treatment, suggesting that it may be an effect of the toxicity of this drug on the corneal tissue. Application of the immunoconjugate showed enhanced amoebicidal and anti-inflammatory activities, with comparison to propamidine isethionate only. The aim of this study is to evaluate the effect of the immunoconjugate of propamidine isethionate and polyclonal antibodies as a treatment of AK in golden hamsters (Mesocricetus auratus).

5.
Int J Exp Pathol ; 104(4): 209-222, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36964979

ABSTRACT

Arginine vasopressin (AVP) is a naturally occurring hormone synthesized in the hypothalamus. AVP demonstrates pro-fibrotic effects as it stimulates hepatic stellate cells to secrete transforming growth factor-ß (TGF-ß) and collagen. Previous work in liver cirrhotic (CCL4 -induced) hamsters demonstrated that AVP deficiency induced by neurointermediate pituitary lobectomy (NIL) can restore liver function. Therefore, we hypothesized that liver fibrosis would decrease in portocaval anastomosis (PCA) rats, which model chronic liver diseases, when they are treated with the V1a-V2 AVP receptor antagonist conivaptan (CV). In this study, changes in liver histology and gene expression were analysed in five experimental groups: control, PCA, NIL, PCA + NIL and PCA + CV, with NIL surgery or CV treatment administered 8 weeks after PCA surgery. Body weight gain was assessed on a weekly basis, and serum liver function, liver weight and liver glycogen content were assessed following euthanasia. Most PCA-induced phenotypes were reverted to normal levels following AVP-modelled deficiency, though hypoglycemia and ammonium levels remained elevated in the PCA + CV group. Liver histopathological findings showed a significant reversal in collagen content, less fibrosis in the triad and liver septa and increased regenerative nodules. Molecular analyses showed that the expression of fibrogenic genes (TGF-ß and collagen type I) decreased in the PCA + CV group. Our findings strongly suggest that chronic NIL or CV treatment can induce a favourable microenvironment to decrease liver fibrosis and support CV as an alternative treatment for liver fibrosis.


Subject(s)
Diabetes Insipidus, Neurogenic , Receptors, Vasopressin , Cricetinae , Rats , Animals , Receptors, Vasopressin/genetics , Antidiuretic Hormone Receptor Antagonists/pharmacology , Arginine Vasopressin/pharmacology , Liver Cirrhosis/drug therapy , Anastomosis, Surgical , Arginine
6.
Ann Med ; 55(1): 543-557, 2023 12.
Article in English | MEDLINE | ID: mdl-36826975

ABSTRACT

The sympathetic nervous system and the immune system are responsible for producing neurotransmitters and cytokines that interact by binding to receptors; due to this, there is communication between these systems. Liver immune cells and nerve fibres are systematically distributed in the liver, and the partial overlap of both patterns may favour interactions between certain elements. Dendritic cells are attached to fibroblasts, and nerve fibres are connected via the dendritic cell-fibroblast complex. Receptors for most neuroactive substances, such as catecholamines, have been discovered on dendritic cells. The sympathetic nervous system regulates hepatic fibrosis through sympathetic fibres and adrenaline from the adrenal glands through the blood. When there is liver damage, the sympathetic nervous system is activated locally and systemically through proinflammatory cytokines that induce the production of epinephrine and norepinephrine. These neurotransmitters bind to cells through α-adrenergic receptors, triggering a cellular response that secretes inflammatory factors that stimulate and activate hepatic stellate cells. Hepatic stellate cells are key in the fibrotic process. They initiate the overproduction of extracellular matrix components in an active state that progresses from fibrosis to liver cirrhosis. It has also been shown that they can be directly activated by norepinephrine. Alpha and beta adrenoblockers, such as carvedilol, prazosin, and doxazosin, have recently been used to reverse CCl4-induced liver cirrhosis in rodent and murine models.KEY MESSAGESNeurotransmitters from the sympathetic nervous system activate and increase the proliferation of hepatic stellate cells.Hepatic fibrosis and cirrhosis treatment might depend on neurotransmitter and hepatic nervous system regulation.Strategies to reduce hepatic stellate cell activation and fibrosis are based on experimentation with α-adrenoblockers.


Subject(s)
Hepatic Stellate Cells , Neuroimmunomodulation , Mice , Humans , Animals , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/pathology , Liver Cirrhosis/pathology , Liver/metabolism , Norepinephrine/metabolism , Fibrosis , Cytokines , Neurotransmitter Agents/metabolism
7.
Antioxidants (Basel) ; 12(1)2023 Jan 03.
Article in English | MEDLINE | ID: mdl-36670975

ABSTRACT

A molecular characterization of the main phytochemicals and antioxidant activity of Opuntia robusta (OR) fruit extract was carried out, as well as an evaluation of its hepatoprotective effect against diclofenac (DF)-induced acute liver injury was evaluated. Phenols, flavonoids and betalains were quantified, and antioxidant characterization was performed by means of the ABTS•+, DPPH and FRAP assays. UPLC-QTOF-MS/MS was used to identify the main biocompounds present in OR fruit extract was carried out via. In the in vivo model, groups of rats were treated prophylactically with the OR fruit extract, betanin and N-acteylcysteine followed by a single dose of DF. Biochemical markers of oxidative stress (MDA and GSH) and relative gene expression of the inducible antioxidant response (Nrf2, Sod2, Hmox1, Nqo1 and Gclc), cell death (Casp3) and DNA repair (Gadd45a) were analyzed. Western blot analysis was performed to measure protein levels of Nrf2 and immunohistochemical analysis was used to assess caspase-3 activity in the experimental groups. In our study, the OR fruit extract showed strong antioxidant and cytoprotective capacity due to the presence of bioactive compounds, such as betalain and phenols. We conclude that OR fruit extract or selected components can be used clinically to support patients with acute liver injury.

8.
Plants (Basel) ; 11(15)2022 Aug 04.
Article in English | MEDLINE | ID: mdl-35956519

ABSTRACT

Liver fibrosis is a chronic disease associated with oxidative stress that has a great impact on the population mortality. Due to their antioxidant capacity, we evaluated the protective effect of Opuntia robusta fruit (Or) on liver fibrosis. A nutraceutical characterization of Or was performed and a model of fibrosis was induced with thioacetamide (TAA) in Wistar rats. Aminotransferases, reduced glutathione (GSH) and histopathology were evaluated. Or contained 436.5 ± 57 mg of Betacyanins equivalents/L., 793 mg of catechin equivalents (CAE)/100 g for flavonoids, 1118 mg of gallic acid equivalents (GAE)/100 g for total phenols, 141.14 mg/100 g for vitamin C and 429.9 µg/100 g for vitamin E. The antioxidant capacity of Or was: 2.27 mmol of Trolox® equivalents (TE)/L (DPPH), 62.2 ± 5.0 µmol TE/g (ABTS•+), 80.2 ± 11.7 µmol TE/g (FRAP), 247.9 ± 15.6 µmol TE/g (AAPH) and 15.0% of H2O2 elimination. An increase (p < 0.05) of aminotransferases and a decrease (p < 0.05) of hepatic GSH was observed in the TAA group compared to the control and the concomitant groups. Histopathology showed changes in the normal architecture of the liver treated with TAA compared to the concomitant treatments. Or contains bioactive components with antioxidant capacity, which can reduce fibrotic liver damage.

9.
Oxid Med Cell Longev ; 2022: 6085515, 2022.
Article in English | MEDLINE | ID: mdl-35189631

ABSTRACT

Doxazosin and carvedilol have been evaluated as an alternative treatment against chronic liver lesions and for their possible role during the regeneration of damage caused by liver fibrosis in a hamster model. However, these drugs have been reported to induce morphological changes in hepatocytes, affecting the recovery of liver parenchyma. The effects of these α/𝛽 adrenoblockers on the viability of hepatocytes are unknown. Herein, we demonstrate the protective effect of curcumin against the possible side effects of doxazosin and carvedilol, drugs with proven antifibrotic activity. After pretreatment with 1 µM curcumin for 1 h, HepG2 cells were exposed to 0.1-25 µM doxazosin or carvedilol for 24, 48, and 72 h. Cell viability was assessed using the MTT assay and SYTOX green staining. Morphological changes were detected using the hematoxylin and eosin (H&E) staining and scanning electron microscopy (SEM). An expression of apoptotic and oxidative stress markers was analyzed using reverse transcription-quantitative PCR (RT-qPCR). The results indicate that doxazosin decreases cell viability in a time- and dose-dependent manner, whereas carvedilol increases cell proliferation; however, curcumin increases or maintains cell viability. SEM and H&E staining provided evidence that doxazosin and carvedilol induced morphological changes in HepG2 cells, and curcumin protected against these effects, maintaining the morphology in 90% of treated cells. Furthermore, curcumin positively regulated the expression of Nrf2, HO-1, and SOD1 mRNAs in cells treated with 0.1 and 0.5 µM doxazosin. Moreover, the Bcl-2/Bax ratio was higher in cells that were treated with curcumin before doxazosin or carvedilol. The present study demonstrates that curcumin controls doxazosin- and carvedilol-induced cytotoxicity and morphological changes in HepG2 cells possibly by overexpression of Nrf2.


Subject(s)
Carvedilol/toxicity , Curcumin/pharmacology , Doxazosin/toxicity , Oxidative Stress/drug effects , Apoptosis/drug effects , Cell Membrane Permeability/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Gene Expression/drug effects , Hep G2 Cells , Hepatocytes/drug effects , Hepatocytes/metabolism , Hepatocytes/ultrastructure , Humans , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism
10.
Vet Res Commun ; 46(2): 459-470, 2022 Jun.
Article in English | MEDLINE | ID: mdl-34997440

ABSTRACT

Secretions of beneficial intestinal bacteria can inhibit the growth and biofilm formation of a wide range of microorganisms. Curcumin has shown broad spectrum antioxidant, anti-inflammatory, and antimicrobial potential. It is important to evaluate the influence of these secretions with bioactive peptides, in combination with curcumin, to limit growth and inhibit biofilm formation of pathogenic bacteria of importance in aquaculture. In the present study, the supernatants of Lactoccocus lactis NZ9000, Lactobacillus rhamnosus GG and Pediococcus pentosaceus NCDO 990, and curcumin (0,1,10,25 and 50 µM) were used to evaluate their efficacy in growth, inhibition biofilm and membrane permeability of Aeromonas hydrophila CAIM 347 (A. hydrophila). The supernatants of probiotics and curcumin 1,10 and 25 µM exerted similar effects in reducing the growth of A. hydrophila at 12 h of interaction. The supernatants of the probiotics and curcumin 25 and 50 µM exerted similar effects in reducing the biofilm of A. hydrophila. There is a significant increase in the membrane permeability of A. hydrophila in interaction with 50 µM curcumin at two hours of incubation and with the supernatants separately in the same period. Different modes of action of curcumin and bacteriocins separately were demonstrated as effective substitutes for antibiotics in containing A. hydrophila and avoiding the application of antibiotics. The techniques implemented in this study provide evidence that there is no synergy between treatments at the selected concentrations and times.


Subject(s)
Curcumin , Lacticaseibacillus rhamnosus , Lactococcus lactis , Aeromonas hydrophila , Animals , Anti-Bacterial Agents/pharmacology , Curcumin/pharmacology , Pediococcus pentosaceus
11.
Mech Ageing Dev ; 201: 111617, 2022 01.
Article in English | MEDLINE | ID: mdl-34958827

ABSTRACT

BACKGROUND: Activated hepatic stellate cells (aHSCs) are the main effector cells during liver fibrogenesis. α-1 adrenergic antagonist doxazosin (DX) was shown to be anti-fibrotic in an in vivo model of liver fibrosis (LF), but the mechanism remains to be elucidated. Recent studies suggest that reversion of LF can be achieved by inducing cellular senescence characterized by irreversible cell-cycle arrest and acquisition of the senescence-associated secretory phenotype (SASP). AIM: To elucidate the mechanism of the anti-fibrotic effect of DX and determine whether it induces senescence. METHODS: Primary culture-activated rat HSCs were used. mRNA and protein expression were measured by qPCR and Western blot, respectively. Cell proliferation was assessed by BrdU incorporation and xCelligence analysis. TGF-ß was used for maximal HSC activation. Norepinephrine (NE), PMA and m-3M3FBS were used to activate alpha-1 adrenergic signaling. RESULTS: Expression of Col1α1 was significantly decreased by DX (10 µmol/L) at mRNA (-30 %) and protein level (-50 %) in TGF-ß treated aHSCs. DX significantly reduced aHSCs proliferation and increased expression of senescence and SASP markers. PMA and m-3M3FBS reversed the effect of DX on senescence markers. CONCLUSION: Doxazosin reverses the fibrogenic phenotype of aHSCs and induces the senescence phenotype.


Subject(s)
Cellular Senescence , Doxazosin/pharmacology , Hepatic Stellate Cells , Liver Cirrhosis , Senescence-Associated Secretory Phenotype/physiology , Signal Transduction/drug effects , Adrenergic alpha-1 Receptor Antagonists/pharmacology , Adrenergic alpha-Agonists/pharmacology , Animals , Cell Cycle Checkpoints/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Cellular Senescence/drug effects , Cellular Senescence/genetics , Hepatic Stellate Cells/drug effects , Hepatic Stellate Cells/metabolism , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Liver Cirrhosis/prevention & control , Norepinephrine/pharmacology , Rats , Receptors, Adrenergic, alpha-1/metabolism , Sulfonamides/pharmacology
12.
J Immunol Res ; 2021: 5529784, 2021.
Article in English | MEDLINE | ID: mdl-34926704

ABSTRACT

Liver diseases, including cirrhosis, viral hepatitis, and hepatocellular carcinoma, account for approximately two million annual deaths worldwide. They place a huge burden on the global healthcare systems, compelling researchers to find effective treatment for liver fibrosis-cirrhosis. Portacaval anastomosis (PCA) is a model of liver damage and fibrosis. Arginine vasopressin (AVP) has been implicated as a proinflammatory-profibrotic hormone. In rats, neurointermediate pituitary lobectomy (NIL) induces a permanent drop (80%) in AVP serum levels. We hypothesized that AVP deficiency (NIL-induced) may decrease liver damage and fibrosis in a rat PCA model. Male Wistar rats were divided into intact control (IC), NIL, PCA, and PCA+NIL groups. Liver function tests, liver gene relative expressions (IL-1, IL-10, TGF-ß, COLL-I, MMP-9, and MMP-13), and histopathological assessments were performed. In comparison with those in the IC and PCA groups, bilirubin, protein serum, and liver glycogen levels were restored in the PCA+NIL group. NIL in the PCA animals also decreased the gene expression levels of IL-1 and COLL-I, while increasing those of IL-10, TGF-ß, and MMP-13. Histopathology of this group also showed significantly decreased signs of liver damage with lower extent of collagen deposition and fibrosis. Low AVP serum levels were not enough to fully activate the AVP receptors resulting in the decreased activation of cell signaling pathways associated with proinflammatory-profibrotic responses, while activating cell molecular signaling pathways associated with an anti-inflammatory-fibrotic state. Thus, partial reversion of liver damage and fibrosis was observed. The study supports the crucial role of AVP in the inflammatory-fibrotic processes and maintenance of immune competence. The success of the AVP deficiency strategy suggests that blocking AVP receptors may be therapeutically useful to treat inflammatory-fibrotic liver diseases.


Subject(s)
Arginine Vasopressin/deficiency , Liver Cirrhosis/pathology , Liver Failure/immunology , Pituitary Gland/metabolism , Receptors, Vasopressin/metabolism , Animals , Arginine Vasopressin/blood , Disease Models, Animal , Humans , Hypophysectomy , Liver Cirrhosis/blood , Liver Cirrhosis/immunology , Liver Failure/blood , Liver Failure/pathology , Male , Pituitary Gland/surgery , Portacaval Shunt, Surgical , Rats , Rats, Wistar , Signal Transduction/immunology
13.
Pathogens ; 10(7)2021 Jul 18.
Article in English | MEDLINE | ID: mdl-34358055

ABSTRACT

The role of immune cells associated with sporotrichosis caused by Sporothrix schenckii is not yet fully clarified. Macrophages through pattern recognition receptors (PRRs) can recognize pathogen-associated molecular patterns (PAMPs) of Sporothrix, engulf it, activate respiratory burst, and secrete pro-inflammatory or anti-inflammatory biological mediators to control infection. It is important to consider that the characteristics associated with S. schenckii and/or the host may influence macrophage polarization (M1/M2), cell recruitment, and the type of immune response (1, 2, and 17). Currently, with the use of new monocyte-macrophage cell lines, it is possible to evaluate different host-pathogen interaction processes, which allows for the proposal of new mechanisms in human sporotrichosis. Therefore, in order to contribute to the understanding of these host-pathogen interactions, the aim of this review is to summarize and discuss the immune responses induced by macrophage-S. schenckii interactions, as well as the PRRs and PAMPs involved during the recognition of S. schenckii that favor the immune evasion by the fungus.

14.
J Immunol Res ; 2021: 6697900, 2021.
Article in English | MEDLINE | ID: mdl-33824880

ABSTRACT

Entamoeba histolytica is an intestinal parasite that causes dysentery and amebic liver abscess. E. histolytica has the capability to invade host tissue by union of virulence factor Gal/GalNAc lectin; this molecule induces an adherence-inhibitory antibody response as well as to protect against amebic liver abscess (ALA). The present work showed the effect of the immunization with PEΔIII-LC3-KDEL3 recombinant protein. In vitro, this candidate vaccine inhibited adherence of E. histolytica trophozoites to HepG2 cell monolayer, avoiding the cytolysis, and in a hamster model, we observed a vaccine-induced protection against the damage to tissue liver and the inhibition of uncontrolled inflammation. PEΔIII-LC3-KDEL3 reduced the expression of TNF-α, IL-1ß, and NF-κB in all immunized groups at 4- and 7-day postinfection. The levels of IL-10, FOXP3, and IFN-γ were elevated at 7 days. The immunohistochemistry assay confirmed this result, revealing an elevated quantity of +IFN-γ cells in the liver tissue. ALA formation in hamsters immunized was minimal, and few trophozoites were identified. Hence, immunization with PEΔIII-LC3-KDEL3 herein prevented invasive amebiasis, avoided an acute proinflammatory response, and activated a protective response within a short time. Finally, this recombinant protein induced an increase of serum IgG.


Subject(s)
Entamoeba histolytica/immunology , Liver Abscess, Amebic/prevention & control , Protozoan Proteins/administration & dosage , Protozoan Vaccines/administration & dosage , Recombinant Fusion Proteins/administration & dosage , Animals , Antibodies, Protozoan/blood , Disease Models, Animal , Entamoeba histolytica/genetics , Humans , Immunogenicity, Vaccine , Lectins/genetics , Lectins/immunology , Liver/immunology , Liver/parasitology , Liver/pathology , Liver Abscess, Amebic/blood , Liver Abscess, Amebic/parasitology , Liver Abscess, Amebic/pathology , Male , Mesocricetus , Protozoan Proteins/genetics , Protozoan Proteins/immunology , Protozoan Vaccines/genetics , Protozoan Vaccines/immunology , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology
15.
Exp Ther Med ; 21(4): 339, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33732312

ABSTRACT

Hepatic cirrhosis is a chronic disease that affects one fifth of the World's population and is the third leading cause of death in Mexico. Attempts have been made to develop treatments for this hepatic cirrhosis, which include manipulating the intestinal microbiota and thus decreasing the early inflammatory response. The microbiota is reportedly altered in patients with cirrhosis. Due to its immunomodulatory properties and its ability to survive in the gastrointestinal tract, Lactococcus lactis (L. lactis) has been used as a therapeutic measure in inflammatory disorders of the colon. The objective of the present study was to evaluate the efficacy of the L. lactis probiotic NZ9000 in preventing tetrachloromethane (CCl4)-induced experimental hepatic fibrosis. The following 4 groups were included in the experimental stage (n=5): i) Control group; ii) L. lactis group; iii) CCl4 group; and iv) L. lactis-CCl4 group. For the first 2 weeks, L. lactis was orally administered to the L. lactis and L. lactis-CCl4 groups; CCl4 was then peritoneally administered to the lactis-CCl4 group for a further 4 weeks (in addition to the probiotic), while the L. lactis group received the probiotic only. For the CCl4 group, CCl4 was administered for 4 weeks. The experimental groups were all compared with the control group and the L. lactis + CCl4 group. Tissue samples were analyzed histologically and biochemically, and the gene expression levels of interleukin (IL)-1, IL-10 and forkhead box protein P3 (FoxP3) were determined. L. lactis decreased hepatic cirrhosis by preventing steatosis and fibrosis, and by reducing the levels of AST and ALT. Subchronic CCl4 injury induced upregulation of the IL-1ß gene in the liver, which was decreased by L. lactis. It was also found that the group treated with L. lactis showed increased expression of Foxp3 in the liver and IL-10 in the gut. These results suggested that oral administration of L. lactis may be a potential probiotic to prevent or protect against CCl4-induced liver injury.

16.
BMC Infect Dis ; 20(1): 669, 2020 Sep 14.
Article in English | MEDLINE | ID: mdl-32928130

ABSTRACT

BACKGROUND: The parasite Entamoeba histolytica is the causal agent of amoebiasis, a worldwide emerging disease. Amebic brain abscess is a form of invasive amebiasis that is both rare and frequently lethal. This condition always begins with the infection of the colon by E. histolytica trophozoites, which subsequently travel through the bloodstream to extraintestinal tissues. CASE PRESENTATION: We report a case of a 71-year-old female who reported an altered state of consciousness, disorientation, sleepiness and memory loss. She had no history of hepatic or intestinal amoebiasis. A preliminary diagnosis of colloidal vesicular phase neurocysticercosis was made based on nuclear magnetic resonance imaging (NMRI). A postsurgery immunofluorescence study was positive for the 140 kDa fibronectin receptor of E. histolytica, although a serum analysis by ELISA was negative for IgG antibodies against this parasite. A specific E. histolytica 128 bp rRNA gene was identified by PCR in biopsy tissue. The final diagnosis was cerebral amoebiasis. The patient underwent neurosurgery to eliminate amoebic abscesses and was then given a regimen of metronidazole, ceftriaxone and dexamethasone for 4 weeks after the neurosurgery. However, a rapid decline in her condition led to death. CONCLUSIONS: The present case of an individual with a rare form of cerebral amoebiasis highlights the importance of performing immunofluorescence, NMRI and PCR if a patient has brain abscess and a poorly defined diagnosis. Moreover, the administration of corticosteroids to such patients can often lead to a rapid decline in their condition.


Subject(s)
Brain Abscess/diagnosis , Brain Abscess/parasitology , Central Nervous System Parasitic Infections/diagnosis , Entamoebiasis/diagnosis , Aged , Animals , Brain Abscess/drug therapy , Brain Abscess/surgery , Ceftriaxone/administration & dosage , Central Nervous System Parasitic Infections/drug therapy , Central Nervous System Parasitic Infections/pathology , Central Nervous System Parasitic Infections/surgery , Combined Modality Therapy , DNA, Protozoan/analysis , Dexamethasone/administration & dosage , Drug Therapy, Combination , Entamoeba histolytica/genetics , Entamoeba histolytica/immunology , Entamoeba histolytica/isolation & purification , Entamoebiasis/drug therapy , Entamoebiasis/pathology , Entamoebiasis/surgery , Fatal Outcome , Female , Humans , Metronidazole/administration & dosage , Neurosurgical Procedures , Serologic Tests
17.
Growth Horm IGF Res ; 53-54: 101332, 2020.
Article in English | MEDLINE | ID: mdl-32698101

ABSTRACT

OBJECTIVE: Growth hormone (GH) deficiency has been associated with increased steatosis but the molecular mechanism has not been fully elucidated. We investigated the effect of GH on lipid accumulation of HepG2 cells cultured on an in vitro steatosis model and examined the potential involvement of insulin-like growth factor 1 (IGF-1) as well as lipogenic and lipolytic molecules. METHODS: Control and steatosis conditions were induced by culturing HepG2 cells with 5.5 or 25 mmol/l glucose for 24 h, respectively. Afterward, cells were exposed to 0, 5, 10 or 20 ng/ml GH for another 24 h. Lipid content was quantified as well as mRNA and protein levels of IGF-1, carbohydrate responsive element-binding protein (ChREBP), sterol regulatory element-binding protein 1c (SREBP1c), fatty acid synthase (FAS), carnitine palmitoyltransferase 1A (CPT1A), and peroxisome proliferator-activated receptor alpha (PPAR-alpha) by qPCR and western blot, respectively. Data were analyzed by one-way ANOVA and the Games-Howell post-hoc test. RESULTS: In the steatosis model, HepG2 hepatocytes showed a significant 2-fold increase in lipid amount as compared to control cells. IGF-1 mRNA and protein levels were significantly increased in control cells exposed to 10 ng/ml GH, whereas high glucose abolished this effect. High glucose also significantly increased both mRNA and protein of ChREBP and FAS without having effect on SREBP1c, CPT1A and PPAR-alpha. However, GH inhibited ChREBP and FAS production, even in HepG2 hepatocytes cultured under steatosis conditions. CONCLUSIONS: Growth hormone ameliorates high glucose-induced steatosis in HepG2 cells by suppressing de novo lipogenesis via ChREBP and FAS down-regulation.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/antagonists & inhibitors , Fatty Acid Synthases/antagonists & inhibitors , Glucose/adverse effects , Hepatocytes/drug effects , Human Growth Hormone/pharmacology , Lipogenesis , Non-alcoholic Fatty Liver Disease/prevention & control , Hep G2 Cells , Hepatocytes/metabolism , Hepatocytes/pathology , Humans , Non-alcoholic Fatty Liver Disease/chemically induced , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Sweetening Agents/adverse effects
18.
Biomed Rep ; 12(5): 233-243, 2020 May.
Article in English | MEDLINE | ID: mdl-32257186

ABSTRACT

Programmed death-ligand 1 (PD-L1) and ICOS-L (also referred to as B7 homolog 1 and 2, respectively) modulate the immune inflammatory response. The aim of the present study was to examine the expression levels of these inflammatory mediators in two groups of patients with an Helicobacter pylori (H. pylori) infection; patients with and without gastric cancer. The association between bacterial virulence factors, CagA and VacA, was also examined, as well as their correlation with the inflammatory profile. Endoscopy analysis indicated that 18 patients suffered from cancer and 28 patients suffered from other gastric pathologies. PCR and reverse transcription-quantitative PCR were used to analyze gastric biopsies and determine the expression levels of the inflammatory modulators PD-L1 and ICOS-L, transcription factors, cytokines and other genes associated with inflammation and pathogenicity. All 46 patients were determined positive for markers of H. pylori. Patients with stomach cancer had lower levels of ICOS-L (P<0.05) and GATA3 (P<0.01), a negative correlation between CagA and IL-17 (P<0.05), a positive correlation between CagA and IL-10 (P<0.05), a negative correlation between vacA-m1 and retinoid orphan receptor γt (RORγt) (P<0.001), and a positive correlation between RORγt and ICOS-L (P<0.001). The reduced levels of ICOS-L and GATA3 along with the negative correlation between CagA and IL-17, and between vacA-m1 and RORγt were all associated with an increased risk of gastric cancer in the present cohort.

19.
Front Cell Infect Microbiol ; 10: 586354, 2020.
Article in English | MEDLINE | ID: mdl-33585267

ABSTRACT

Entamoeba histolytica is an invasive enteric protozoan, whose infections are associated to high morbidity and mortality rates. However, only less than 10% of infected patients develop invasive amebiasis. The ability of E. histolytica to adapt to the intestinal microenvironment could be determinant in triggering pathogenic behavior. Indeed, during chronic inflammation, the vagus nerve limits the immune response through the anti-inflammatory reflex, which includes acetylcholine (ACh) as one of the predominant neurotransmitters at the infection site. Consequently, the response of E. histolytica trophozoites to ACh could be implicated in the establishment of invasive disease. The aim of this study was to evaluate the effect of ACh on E. histolytica virulence. Methods include binding detection of ACh to plasma membrane, quantification of the relative expression of virulence factors by RT-PCR and western blot, evaluation of the effect of ACh in different cellular processes related to E. histolytica pathogenesis, and assessment of the capability of E. histolytica to migrate and form hepatic abscesses in hamsters. Results demonstrated that E. histolytica trophozoites bind ACh on their membrane and show a clear increase of the expression of virulence factors, that were upregulated upon stimulation with the neurotransmitter. ACh treatment increased the expression of L220, Gal/GalNAc lectin heavy subunit (170 kDa), amebapore C, cysteine proteinase 2 (ehcp-a2), and cysteine proteinase 5 (ehcp-a5). Moreover, erythrophagocytosis, cytotoxicity, and actin cytoskeleton remodeling were augmented after ACh treatment. Likewise, by assessing the formation of amebic liver abscess, we found that stimulated trophozoites to develop greater hamster hepatic lesions with multiple granulomas. In conclusion, ACh enhanced parasite pathogenicity by upregulating diverse virulence factors, thereby contributing to disease severity, and could be linked to the establishment of invasive amebiasis.


Subject(s)
Amebiasis , Entamoeba histolytica , Entamoebiasis , Liver Abscess, Amebic , Parasites , Acetylcholine , Animals , Cricetinae , Humans , Virulence , Virulence Factors
20.
Histol Histopathol ; 35(1): 47-56, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31173272

ABSTRACT

Amoebic liver abscess (ALA) is the main extra-intestinal complication caused by Entamoeba histolytica. Given the histological features of ALA in hamsters and the importance of the vagus nerve in the immune response, the aim of this study was to identify and analyze the major changes in ALA that are caused by a vagotomy. The changes found are related to inflammatory foci and abscess size, the type of collagen formed, and the number of trophozoites in lesions. Male hamsters were divided into three groups: Intact animals (IA) and those undergoing a false operation (SHAM) or a subdiaphragmatic vagotomy (VAG). In each group, E. histolytica trophozoites or culture medium (CM) were inoculated in hamsters by the intrahepatic route, and then euthanized at 6h, 12h, 24h, 48h, 4d or 7d post-infection. Initially the growth of the abscess was more rapid in the VAG group, but at day 7 it was faster in the IA and SHAM groups. VAG animals showed a higher quantity of type III collagen than the IA and SHAM groups. A larger number of amoebic trophozoites/mm² was observed up to day 4 in VAG hamsters (23.3±2.19) compared to IA (14.6±0.23) and SHAM (6.13±0.87) animals. This parameter decreased by day 7 in VAG (13.4±0.87) with respect to IA (24.7±1.47) and SHAM (21.7±1.48). The results show that a subdiaphragmatic vagotomy influenced the development of ALA in hamsters, suggesting a modification of the morphological structure of damaged hepatic tissue.


Subject(s)
Entamoeba histolytica , Liver Abscess, Amebic/parasitology , Liver/parasitology , Vagotomy , Vagus Nerve/physiology , Animals , Collagen/chemistry , Cricetinae , Culture Media , Disease Models, Animal , Liver/innervation , Liver/pathology , Male , Mesocricetus , Vagus Nerve/surgery
SELECTION OF CITATIONS
SEARCH DETAIL
...