Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
1.
Front Cell Dev Biol ; 12: 1367242, 2024.
Article in English | MEDLINE | ID: mdl-38606318

ABSTRACT

Introduction: Adipose tissue-derived mesenchymal stem cells are promising contributors to regenerative medicine, exhibiting the ability to regenerate tissues and modulate the immune system, which is particularly beneficial for addressing chronic inflammatory ulcers and wounds. Despite their inherent capabilities, research suggests that pretreatment amplifies therapeutic effectiveness. Methods: Our experimental design exposed adipose-derived mesenchymal stem cells to six inflammatory factors for 24 h. We subsequently evaluated gene expression and proteome profile alterations and observed the wound closure rate post-treatment. Results: Specific pretreatments, such as IL-1ß, notably demonstrated an accelerated wound-healing process. Analysis of gene and protein expression profiles revealed alterations in pathways associated with tissue regeneration. Discussion: This suggests that licensed cells exhibit potentially higher therapeutic efficiency than untreated cells, shedding light on optimizing regenerative strategies using adipose tissue-derived stem cells.

2.
Pharmaceutics ; 16(2)2024 Feb 18.
Article in English | MEDLINE | ID: mdl-38399341

ABSTRACT

Medicated foams have emerged as promising alternatives to traditional carrier systems in pharmaceutical research. Their rapid and convenient application allows for effective treatment of extensive or hirsute areas, as well as sensitive or inflamed skin surfaces. Foams possess excellent spreading capabilities on the skin, ensuring immediate drug absorption without the need for intense rubbing. Our research focuses on the comparison of physicochemical and biopharmaceutical properties of three drug delivery systems: foam, the foam bulk liquid, and a conventional hydrogel. During the development of the composition, widely used diclofenac sodium was employed. The safety of the formulae was confirmed through an in vitro cytotoxicity assay. Subsequently, the closed Franz diffusion cell was used to determine drug release and permeation in vitro. Ex vivo Raman spectroscopy was employed to investigate the presence of diclofenac sodium in various skin layers. The obtained results of the foam were compared to the bulk liquid and to a conventional hydrogel. In terms of drug release, the foam showed a rapid release, with 80% of diclofenac released within 30 min. In summary, the investigated foam holds promising potential as an alternative to traditional dermal carrier systems, offering faster drug release and permeation.

3.
Eur J Pharm Sci ; 193: 106666, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38081373

ABSTRACT

Transdermal delivery of active ingredients is a challenge for pharmaceutical technology due to their inadequate penetration properties and the barrier function of the skin. The necessity of painless, effective, topical therapy for the aging population is growing, and a variety of diclofenac sodium-containing semi-solid preparations are available to alleviate the symptoms of these ailments. Our purpose was to formulate a novel composition with higher drug content to enhance drug release and permeation, thereby providing more effective therapy. Another goal was to maintain the concentration of the organic solvent mixture below 30%, to protect the skin barrier. Firstly, literature and market research were conducted, based on which the appropriate excipients for the target formulation were selected. Solubility tests were conducted with binary and ternary mixtures. As a result, the optimal ternary mixture was chosen. Hydrogels containing 1, 5, and 7% of diclofenac sodium were prepared and the stability of the formulations were studied by microscopic measurements and cytotoxicity test were carried out of the components also. The release and permeation of diclofenac sodium were investigated in different concentrations. It can be concluded that we have succeeded in preparing a topically applicable stable diclofenac sodium hydrogel with higher concentration, drug release, and improved skin permeation than the formulations available on the market.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal , Diclofenac , Skin Absorption , Hydrogels/metabolism , Skin/metabolism , Administration, Cutaneous
4.
Cells ; 12(24)2023 12 12.
Article in English | MEDLINE | ID: mdl-38132145

ABSTRACT

Keratinocytes are one of the primary cells affected by psoriasis inflammation. Our study aimed to delve deeper into their morphology, transcriptome, and epigenome changes in response to psoriasis-like inflammation. We created a novel cytokine mixture to mimic mild and severe psoriasis-like inflammatory conditions in cultured keratinocytes. Upon induction of inflammation, we observed that the keratinocytes exhibited a mesenchymal-like phenotype, further confirmed by increased VIM mRNA expression and results obtained from confocal microscopy. We performed RNA sequencing to achieve a more global view, revealing 858 and 6987 DEGs in mildly and severely inflamed keratinocytes, respectively. Surprisingly, we found that the transcriptome of mildly inflamed keratinocytes more closely mimicked that of the psoriatic epidermis transcriptome than the severely inflamed keratinocytes. Genes involved in the IL-17 pathway were a major contributor to the similarities of the transcriptomes between mildly inflamed KCs and psoriatic epidermis. Mild and severe inflammation led to the gene regulation of epigenetic modifiers such as HATs, HDACs, DNMTs, and TETs. Immunofluorescence staining revealed distinct 5-hmC patterns in inflamed versus control keratinocytes, and consistently low 5-mC intensity in both groups. However, the global DNA methylation assay detected a tendency of decreased 5-mC levels in inflamed keratinocytes versus controls. This study emphasizes how inflammation severity affects the transcriptomic similarity of keratinocytes to psoriatic epidermis and proves dynamic epigenetic regulation and adaptive morphological changes in inflamed keratinocytes.


Subject(s)
Psoriasis , Transcriptome , Humans , Transcriptome/genetics , Epigenesis, Genetic , Keratinocytes/metabolism , Epidermis/metabolism , Psoriasis/genetics , Psoriasis/metabolism , Inflammation/genetics , Inflammation/metabolism
5.
Biomedicines ; 11(11)2023 Nov 10.
Article in English | MEDLINE | ID: mdl-38002017

ABSTRACT

BACKGROUND: Phenol-soluble modulins (PSMs) are pore-forming toxins (PFTs) produced by staphylococci. PSMs exert diverse cellular effects, including lytic, pro-apoptotic, pro-inflammatory and antimicrobial actions. Since the effects of PSMs on autophagy have not yet been reported, we evaluated the autophagic activity in HaCaT keratinocytes treated with recombinant PSMα3. METHODS: The autophagic flux and levels of autophagic marker proteins were determined using Western blot analysis. Subcellular localization of LC3B and Beclin-1 was investigated using an indirect immunofluorescence assay. The ultrastructural features of control and PSMα3-treated cells were evaluated via transmission electron microscopy. Cytoplasmic acidification was measured via acridine orange staining. Phosphorylation levels of protein kinases, implicated in autophagy regulation, were studied using a phospho-kinase array and Western blot analysis. RESULTS: PSMα3 facilitated the intracellular redistribution of LC3B, increased the average number of autophagosomes per cell, promoted the development of acidic vesicular organelles, elevated the levels of LC3B-II, stimulated autophagic flux and triggered a significant decrease in the net autophagic turnover rate. PSMα3 induced the accumulation of autophagosomes/autolysosomes, amphisomes and multilamellar bodies at the 0.5, 6 and 24 h time points, respectively. The phospho-Akt1/2/3 (T308 and S473), and phospho-mTOR (S2448) levels were decreased, whereas the phospho-Erk1/2 (T202/Y204 and T185/Y187) level was increased in PSMα3-treated cells. CONCLUSIONS: In HaCaT keratinocytes, PSMα3 stimulates autophagy. The increased autophagic activity elicited by sub-lytic PSM concentrations might be an integral part of the cellular defense mechanisms protecting skin homeostasis.

6.
Int J Mol Sci ; 24(15)2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37569367

ABSTRACT

The proper functioning of mesenchymal stem cells (MSCs) is of paramount importance for the homeostasis of the body. Inflammation and infection can alter the function of MSCs, which can also affect the regenerative potential and immunological status of tissues. It is not known whether human herpes simplex viruses 1 and 2 (HSV1 and HSV2), well-known human pathogens that can cause lifelong infections, can induce changes in MSCs. In non-healing ulcers, HSV infection is known to affect deeper tissue layers. In addition, HSV infection can recur after initially successful cell therapies. Our aim was to study the response of adipose-derived MSCs (ADMSCs) to HSV infection in vitro. After confirming the phenotype and differentiation capacity of the isolated cells, we infected the cells in vitro with HSV1-KOS, HSV1-532 and HSV2 virus strains. Twenty-four hours after infection, we examined the gene expression of the cells via RNA-seq and RT-PCR; detected secreted cytokines via protein array; and determined autophagy via Western blot, transmission electron microscopy (TEM) and fluorescence microscopy. Infection with different HSV strains resulted in different gene-expression patterns. In addition to the activation of pathways characteristic of viral infections, distinct non-immunological pathways (autophagy, tissue regeneration and differentiation) were also activated according to analyses with QIAGEN Ingenuity Pathway Analysis, Kyoto Encyclopedia of Genes and Genome and Genome Ontology Enrichment. Viral infections increased autophagy, as confirmed via TEM image analysis, and also increased levels of the microtubule-associated protein light chain 3 (LC3B) II protein. We identified significantly altered accumulation for 16 cytokines involved in tissue regeneration and inflammation. Our studies demonstrated that HSV infection can alter the viability and immunological status of ADMSCs, which may have implications for ADMSC-based cell therapies. Alterations in autophagy can affect numerous processes in MSCs, including the inhibition of tissue regeneration as well as pathological differentiation.


Subject(s)
Herpes Simplex , Herpesvirus 1, Human , Mesenchymal Stem Cells , Humans , Herpesvirus 1, Human/physiology , Herpes Simplex/pathology , Mesenchymal Stem Cells/metabolism , Herpesvirus 2, Human , Cytokines/metabolism , Inflammation/metabolism
7.
Cells ; 12(15)2023 07 29.
Article in English | MEDLINE | ID: mdl-37566046

ABSTRACT

Adipose-derived mesenchymal stem cells are increasingly being used in regenerative medicine as cell therapy targets, including in the treatment of burns and ulcers. The regenerative potential of AD-MSCs and some of their immunological properties are known from in vitro studies; however, in clinical applications, cells are used in non-ideal conditions and can behave differently in inflammatory environments, affecting the efficacy and outcome of therapy. Our aim was to investigate and map the pathways that the inflammatory microenvironment can induce in these cells. High-throughput gene expression assays were performed on AD-MSCs activated with LPS and TNFα. Analysis of RNA-Seq data showed that control, LPS-treated and TNFα-treated samples exhibited distinct gene expression patterns. LPS treatment increased the expression of 926 genes and decreased the expression of 770 genes involved in cell division, DNA repair, the cell cycle, and several metabolic processes. TNFα treatment increased the expression of 174 genes and decreased the expression of 383 genes, which are related to cell division, the immune response, cell proliferation, and differentiation. We also map the biological pathways by further investigating the most altered genes using the Gene Ontology and KEGG databases. Secreted cytokines, which are important in the immunological response, were also examined at the protein level, and a functional assay was performed to assess wound healing. Activated AD-MSC increased the secretion of IL-6, IL-8 and CXCL-10, and also the closure of wounds. AD-MSCs presented accelerated wound healing under inflammation conditions, suggesting that we could use this cell in clinical application.


Subject(s)
Mesenchymal Stem Cells , Tumor Necrosis Factor-alpha , Tumor Necrosis Factor-alpha/metabolism , Lipopolysaccharides/pharmacology , Mesenchymal Stem Cells/metabolism , Cytokines/metabolism , Cell Differentiation
9.
Int J Mol Sci ; 24(13)2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37445938

ABSTRACT

Classic diffusely infiltrating lobular carcinoma has imaging features divergent from the breast cancers originating from the terminal ductal lobular units and from the major lactiferous ducts. Although the term "invasive lobular carcinoma" implies a site of origin within the breast lobular epithelium, we were unable to find evidence supporting this assumption. Exceptional excess of fibrous connective tissue and the unique cell architecture combined with the aberrant features at breast imaging suggest that this breast malignancy has not originated from cells lining the breast ducts and lobules. The only remaining relevant component of the fibroglandular tissue is the mesenchyme. The cells freshly isolated and cultured from diffusely infiltrating lobular carcinoma cases contained epithelial-mesenchymal hybrid cells with both epithelial and mesenchymal properties. The radiologic and histopathologic features of the tumours and expression of the mesenchymal stem cell positive markers CD73, CD90, and CD105 all suggest development in the direction of mesenchymal transition. These hybrid cells have tumour-initiating potential and have been shown to have poor prognosis and resistance to therapy targeted for malignancies of breast epithelial origin. Our work emphasizes the need for new approaches to the diagnosis and therapy of this highly fatal breast cancer subtype.


Subject(s)
Breast Neoplasms , Carcinoma, Ductal, Breast , Carcinoma, Lobular , Mammary Glands, Human , Humans , Female , Carcinoma, Lobular/metabolism , Breast Neoplasms/metabolism , Breast/metabolism , Epithelial Cells/metabolism , Mammary Glands, Human/metabolism , Carcinoma, Ductal, Breast/pathology
10.
Int J Bioprint ; 9(2): 665, 2023.
Article in English | MEDLINE | ID: mdl-37065656

ABSTRACT

256Diabetes is an autoimmune disease that ensues when the pancreas does not deliver adequate insulin or when the body cannot react to the existing insulin. Type 1 diabetes is an autoimmune disease defined by continuous high blood sugar levels and insulin deficiency due to ß-cell destruction in the islets of Langerhans (pancreatic islets). Long-term complications, such as vascular degeneration, blindness, and renal failure, result from periodic glucose-level fluctuations following exogenous insulin therapy. Nevertheless, the shortage of organ donors and the lifelong dependency on immunosuppressive drugs limit the transplantation of the entire pancreas or pancreas islet, which is the therapy for this disease. Although encapsulating pancreatic islets using multiple hydrogels creates a semi-privileged environment to prevent immune rejection, hypoxia that occurs in the core of the capsules is the main hindrance that should be solved. Bioprinting technology is an innovative process in advanced tissue engineering that allows the arranging of a wide array of cell types, biomaterials, and bioactive factors as a bioink to simulate the native tissue environment for fabricating clinically applicable bioartificial pancreatic islet tissue. Multipotent stem cells have the potential to be a possible solution for donor scarcity and can be a reliable source for generating autograft and allograft functional ß-cells or even pancreatic islet-like tissue. The use of supporting cells, such as endothelial cells, regulatory T cells, and mesenchymal stem cells, in the bioprinting of pancreatic islet-like construct could enhance vasculogenesis and regulate immune activity. Moreover, scaffolds bioprinted using biomaterials that can release oxygen postprinting or enhance angiogenesis could increase the function of ß-cells and the survival of pancreatic islets, which could represent a promising avenue.

11.
Int J Bioprint ; 9(2): 663, 2023.
Article in English | MEDLINE | ID: mdl-37065668

ABSTRACT

The importance of three-dimensional (3D) models in pharmacological tests and personalized therapies is significant. These models allow us to gain insight into the cell response during drug absorption, distribution, metabolism, and elimination in an organ-like system and are suitable for toxicological testing. In personalized and regenerative medicine, the precise characterization of artificial tissues or drug metabolism processes is more than crucial to gain the safest and the most effective treatment for the patients. Using these 3D cell cultures derived directly from patient, such as spheroids, organoids, and bioprinted structures, allows for testing drugs before administration to the patient. These methods allow us to select the most appropriate drug for the patient. Moreover, they provide chance for better recovery of patients, since time is not wasted during therapy switching. These models could be used in applied and basic research as well, because their response to treatments is quite similar to that of the native tissue. Furthermore, they may replace animal models in the future because these methods are cheaper and can avoid interspecies differences. This review puts a spotlight on this dynamically evolving area and its application in toxicological testing.

12.
Int J Mol Sci ; 24(5)2023 Feb 25.
Article in English | MEDLINE | ID: mdl-36901987

ABSTRACT

The disease-residual transcriptomic profile (DRTP) within psoriatic healed/resolved skin and epidermal tissue-resident memory T (TRM) cells have been proposed to be crucial for the recurrence of old lesions. However, it is unclear whether epidermal keratinocytes are involved in disease recurrence. There is increasing evidence regarding the importance of epigenetic mechanisms in the pathogenesis of psoriasis. Nonetheless, the epigenetic changes that contribute to the recurrence of psoriasis remain unknown. The aim of this study was to elucidate the role of keratinocytes in psoriasis relapse. The epigenetic marks 5-methylcytosine (5-mC) and 5-hydroxymethylcytosine (5-hmC) were visualized using immunofluorescence staining, and RNA sequencing was performed on paired never-lesional and resolved epidermal and dermal compartments of skin from psoriasis patients. We observed diminished 5-mC and 5-hmC amounts and decreased mRNA expression of the ten-eleven translocation (TET) 3 enzyme in the resolved epidermis. SAMHD1, C10orf99, and AKR1B10: the highly dysregulated genes in resolved epidermis are known to be associated with pathogenesis of psoriasis, and the DRTP was enriched in WNT, TNF, and mTOR signaling pathways. Our results suggest that epigenetic changes detected in epidermal keratinocytes of resolved skin may be responsible for the DRTP in the same regions. Thus, the DRTP of keratinocytes may contribute to site-specific local relapse.


Subject(s)
Psoriasis , Transcriptome , Humans , Epigenomics , Skin/metabolism , Keratinocytes/metabolism , Epidermis/metabolism , Psoriasis/metabolism
13.
Int J Mol Sci ; 23(20)2022 Oct 12.
Article in English | MEDLINE | ID: mdl-36293012

ABSTRACT

Generally, a reciprocal antagonistic interaction exists between the antiviral type I interferon (IFN) and the antibacterial nucleotide-binding oligomerization domain (NOD)-like receptor pyrin domain containing 3 (NLRP3)-dependent IL-1ß pathways that can significantly shape immune responses. Plasmacytoid dendritic cells (pDCs), as professional type I IFN-producing cells, are the major coordinators of antiviral immunity; however, their NLRP3-dependent IL-1ß secretory pathway is poorly studied. Our aim was to determine the functional activity of the IL-1ß pathway and its possible interaction with the type I IFN pathway in pDCs. We found that potent nuclear factor-kappa B (NF-κB) inducers promote higher levels of pro-IL-1ß during priming compared to those activation signals, which mainly trigger interferon regulatory factor (IRF)-mediated type I IFN production. The generation of cleaved IL-1ß requires certain secondary signals in pDCs and IFN-α or type I IFN-inducing viruses inhibit IL-1ß production of pDCs, presumably by promoting the expression of various NLRP3 pathway inhibitors. In line with that, we detected significantly lower IL-1ß production in pDCs of psoriasis patients with elevated IFN-α levels. Collectively, our results show that the NLRP3-dependent IL-1ß secretory pathway is inducible in pDCs; however, it may only prevail under inflammatory conditions, in which the type I IFN pathway is not dominant.


Subject(s)
Interferon Type I , NLR Family, Pyrin Domain-Containing 3 Protein , Humans , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Interferon Type I/metabolism , NF-kappa B/metabolism , Signal Transduction , Interleukin-1beta/metabolism , Dendritic Cells , Interferon-alpha/metabolism , Antiviral Agents/metabolism , Interferon Regulatory Factors/metabolism , Anti-Bacterial Agents/metabolism , Nucleotides/metabolism , Inflammasomes/metabolism
14.
Orv Hetil ; 163(10): 375-385, 2022 03 06.
Article in Hungarian | MEDLINE | ID: mdl-35249001

ABSTRACT

Összefoglaló. A borpótlóknak mind a klinikumban, mind a gyógyszerkutatásokban kiemelt szerepük van. Ezek a kezdetleges mesterséges borszövetek segíthetik a bor regenerálódását, modellezhetik a fobb funkciókat, de megvannak a korlátaik is, mechanikailag sérülékenyek, és nem tartósak. A legtöbb borpótló vagy acelluláris, vagy csak egy-két sejttípust tartalmaz. Az eredeti borrel megegyezo szerkezetu, teljesen funkcionális mesterséges borszövet a mai napig nem létezik. A háromdimenziós szövetnyomtatás megoldást kínálhat erre a problémára is, hiszen a borszövet minden sejtes eleme felhasználható, megfelelo hidrogélek és biotinták segítségével pedig olyan komplex struktúrák hozhatók létre, amelyek képesek a bor teljes funkcionális repertoárját biztosítani. Ez nemcsak klinikai szempontból kiemelt jelentoségu, hanem a preklinikai kísérletek esetében kiválthatja az állatmodelleket és számos toxikológiai vizsgálatot is. Orv Hetil. 2022; 163(10): 375-385. Summary. Skin substitutes have a prominent role in therapeutic applications and drug research. These simple artificial skin tissues can support skin regeneration, in vitro they can model the main functions of the skin but they also have limitations such as being mechanically vulnerable and not durable enough. Most skin substitutes are either acellular or contain only one or two cell types. Fully functional artificial skin substitute with the same structure as the original skin has not been produced to this day. Three-dimensional tissue bioprinting can also offer a solution to this problem, as all cellular elements of skin tissue can be used, and with the help of appropriate hydrogels and bioinks, complex structures can be created that can provide a complete functional repertoire of the skin. It is important not just in the clinical therapeutic use, but it can also trigger the replacement of animal models and a number of toxicological studies in preclinical trials. Orv Hetil. 2022; 163(10): 375-385.

15.
Pigment Cell Melanoma Res ; 35(1): 38-51, 2022 01.
Article in English | MEDLINE | ID: mdl-34467641

ABSTRACT

We previously described a novel in vitro culture technique for dedifferentiated human adult skin melanocytes. Melanocytes cultured in a defined, cholera toxin and PMA free medium became bipolar, unpigmented, and highly proliferative. Furthermore, TRP-1 and c-Kit expression disappeared and EGFR receptor and nestin expression were induced in the cells. Here, we further characterized the phenotype of these dedifferentiated cells and by comparing them to mature pigmented melanocytes we detected crucial steps in their phenotype change. Our data suggest that normal adult melanocytes easily dedifferentiate into pluripotent stem cells given the right environment. This dedifferentiation process described here for normal melanocyte is very similar to what has been described for melanoma cells, indicating that phenotype switching driven by environmental factors is a general characteristic of melanocytes that can occur independent of malignant transformation.


Subject(s)
Cell Dedifferentiation , Cell Plasticity , Melanocytes/physiology , Skin/cytology , Adult , Cell Proliferation , Cells, Cultured , ErbB Receptors/genetics , ErbB Receptors/metabolism , Gene Expression Profiling , Gene Regulatory Networks , Humans , Melanins/metabolism , Melanocytes/metabolism , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Middle Aged , Nestin/genetics , Nestin/metabolism , Oxidoreductases/genetics , Oxidoreductases/metabolism , Phenotype , Proto-Oncogene Proteins c-kit/genetics , Proto-Oncogene Proteins c-kit/metabolism , RNA-Seq , Signal Transduction , Transcriptome , Young Adult
16.
Pathol Oncol Res ; 28: 1610598, 2022.
Article in English | MEDLINE | ID: mdl-36685105

ABSTRACT

Background: The therapeutic strategy of invasive breast cancer is based on routine histopathological markers (estrogen-, progesterone receptor, HER2, Ki67) routinely evaluated in tumor cells. However, the assessment of cancer stroma could influence therapeutic strategies. Studies have shown that stromal expression of CD10, a zinc-dependent metalloproteinase, is associated with biological aggressiveness of the tumor. In the present retrospective study, we aimed to evaluate stromal CD10 expression and association between CD10 expression and response to neoadjuvant chemotherapy in invasive breast cancer. Methods: CD10 immunohistochemistry was performed on core biopsies taken before the neoadjuvant therapy. Stromal CD10 expression was determined and compared with well-known predictive and prognostic tissue markers as well as with the following groups defined according to the degree of tumor response: no regression, partial regression, and complete regression. Results: A total of 60 locally advanced invasive breast carcinomas of "no special type" were included. The proportion of CD10 positive tumors was significantly higher in the "no regression" group compared to "complete regression" group (p = 0.000). Stromal CD10 expression was found to be significantly associated with decrease in response to neoadjuvant chemotherapy. According to CD10 expression we did not find any difference in hormone receptor status, Ki67, tumor grade or neostromal area. Conclusion: Our data suggest that CD10 expression can serve as a predictive marker of the effect of neoadjuvant chemotherapy in breast cancer patients. Therefore, its inclusion into the routine assessment of biopsies to tailor tumor-specific therapeutic strategies merits consideration.


Subject(s)
Biomarkers, Tumor , Breast Neoplasms , Neprilysin , Female , Humans , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Biomarkers, Tumor/metabolism , Breast Neoplasms/pathology , Ki-67 Antigen/metabolism , Neoadjuvant Therapy , Prognosis , Receptor, ErbB-2/metabolism , Receptors, Progesterone/metabolism , Retrospective Studies , Neprilysin/metabolism
17.
PLoS One ; 16(11): e0258502, 2021.
Article in English | MEDLINE | ID: mdl-34723976

ABSTRACT

Recent animal studies, as well as quantitative sodium MRI observations on humans demonstrated that remarkable amounts of sodium can be stored in the skin. It is also known that excess sodium in the tissues leads to inflammation in various organs, but its role in dermal pathophysiology has not been elucidated. Therefore, our aim was to study the effect of dietary salt loading on inflammatory process and related extracellular matrix (ECM) remodeling in the skin. To investigate the effect of high salt consumption on inflammation and ECM production in the skin mice were kept on normal (NSD) or high salt (HSD) diet and then dermatitis was induced with imiquimod (IMQ) treatment. The effect of high salt concentration on dermal fibroblasts (DF) and peripheral blood mononuclear cells (PBMC) was also investigated in vitro. The HSD resulted in increased sodium content in the skin of mice. Inflammatory cytokine Il17 expression was elevated in the skin of HSD mice. Expression of anti-inflammatory Il10 and Il13 decreased in the skin of HSD or HSD IMQ mice. The fibroblast marker Acta2 and ECM component Fn and Col1a1 decreased in HSD IMQ mice. Expression of ECM remodeling related Pdgfb and activation phosphorylated (p)-SMAD2/3 was lower in HSD IMQ mice. In PBMCs, production of IL10, IL13 and PDGFB was reduced due to high salt loading. In cultured DFs high salt concentration resulted in decreased cell motility and ECM production, as well. Our results demonstrate that high dietary salt intake is associated with increased dermal pro-inflammatory status. Interestingly, although inflammation induces the synthesis of ECM in most organs, the expression of ECM decreased in the inflamed skin of mice on high salt diet. Our data suggest that salt intake may alter the process of skin remodeling.


Subject(s)
Dermatitis/pathology , Dermis/pathology , Imiquimod/adverse effects , Sodium Chloride, Dietary/adverse effects , Animals , Biomarkers/metabolism , Body Weight , Cell Movement , Cells, Cultured , Cytokines/metabolism , Disease Models, Animal , Extracellular Matrix/metabolism , Fibroblasts/pathology , Humans , Inflammation/pathology , Inflammation Mediators/metabolism , Leukocytes, Mononuclear/metabolism , Male , Mice, Inbred C57BL , Probiotics/metabolism
18.
Biomedicines ; 9(11)2021 Oct 26.
Article in English | MEDLINE | ID: mdl-34829770

ABSTRACT

Autophagy is an intracellular catabolic process that controls infections both directly and indirectly via its multifaceted effects on the innate and adaptive immune responses. It has been reported that LPS stimulates this cellular process, whereas the effect of IL-36α on autophagy remains largely unknown. We therefore investigated how IL-36α modulates the endogenous and LPS-induced autophagy in THP-1 cells. The levels of LC3B-II and autophagic flux were determined by Western blotting. The intracellular localization of LC3B was measured by immunofluorescence assay. The activation levels of signaling pathways implicated in autophagy regulation were evaluated by using a phosphokinase array. Our results showed that combined IL-36α and LPS treatment cooperatively increased the levels of LC3B-II and Beclin-1, stimulated the autophagic flux, facilitated intracellular redistribution of LC3B, and increased the average number of autophagosomes per cell. The IL36α/LPS combined treatment increased phosphorylation of STAT5a/b, had minimal effect on the Akt/PRAS40/mTOR pathway, and reduced the levels of phospho-Yes, phospho-FAK, and phospho-WNK1. Thus, this cytokine/PAMP combination triggers pro-autophagic biased signaling by several mechanisms and thus cooperatively stimulates the autophagic cascade. An increased autophagic activity of innate immune cells simultaneously exposed to IL-36α and LPS may play an important role in the pathogenesis of Gram-negative bacterial infections.

19.
Am J Physiol Cell Physiol ; 321(5): C798-C811, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34524930

ABSTRACT

Altered esophageal ion transport mechanisms play a key role in inflammatory and cancerous diseases of the esophagus, but epithelial ion processes have been less studied in the esophagus because of the lack of a suitable experimental model. In this study, we generated three-dimensional (3D) esophageal organoids (EOs) from two different mouse strains and characterized the ion transport processes of the EOs. EOs form a cell-filled structure with a diameter of 250-300 µm and were generated from epithelial stem cells as shown by FACS analysis. Using conventional PCR and immunostaining, the presence of Slc26a6 Cl-/HCO3- anion exchanger (AE), Na+/H+ exchanger (NHE), Na+/HCO3- cotransporter (NBC), cystic fibrosis transmembrane conductance regulator (CFTR), and anoctamin 1 Cl- channels was detected in EOs. Microfluorimetric techniques revealed high NHE, AE, and NBC activities, whereas that of CFTR was relatively low. In addition, inhibition of CFTR led to functional interactions between the major acid-base transporters and CFTR. We conclude that EOs provide a relevant and suitable model system for studying the ion transport mechanisms of esophageal epithelial cells, and they can be also used as preclinical tools to assess the effectiveness of novel therapeutic compounds in esophageal diseases associated with altered ion transport processes.


Subject(s)
Epithelial Cells/metabolism , Esophagus/metabolism , Membrane Transport Proteins/metabolism , Organoids/metabolism , Stem Cells/metabolism , Animals , Anoctamin-1/genetics , Anoctamin-1/metabolism , Antiporters/genetics , Antiporters/metabolism , Cell Culture Techniques , Cells, Cultured , Chloride-Bicarbonate Antiporters/genetics , Chloride-Bicarbonate Antiporters/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Esophagus/cytology , Female , Ion Transport , Male , Membrane Transport Proteins/genetics , Mice, Inbred C57BL , Organoids/cytology , Sodium-Bicarbonate Symporters/genetics , Sodium-Bicarbonate Symporters/metabolism , Sodium-Hydrogen Exchangers/genetics , Sodium-Hydrogen Exchangers/metabolism , Sulfate Transporters/genetics , Sulfate Transporters/metabolism
20.
iScience ; 24(4): 102312, 2021 Apr 23.
Article in English | MEDLINE | ID: mdl-33855282

ABSTRACT

Mesenchymal stromal cell-like (MSCl) cells generated from human embryonic stem cells are considered to be an eligible cell line to model the immunomodulatory behavior of mesenchymal stromal cells (MSCs) in vitro. Dendritic cells (DCs) are essential players in the maintenance and restoration of the sensitive balance between tolerance and immunity. Here, the effects of MSCl cells on the in vitro differentiation of human monocytes into DCs were investigated. MSCl cells promote the differentiation of CTLA-4 expressing DCs via the production of all-trans retinoic acid (ATRA) functioning as a ligand of RARα, a key nuclear receptor in DC development. These semi-matured DCs exhibit an ability to activate allogeneic, naive T cells and polarize them into IL-10 + IL-17 + double-positive T helper cells in a CTLA-4-dependent manner. Mapping the molecular mechanisms of MSC-mediated indirect modulation of DC differentiation may help to expand MSCs' clinical application in cell-free therapies.

SELECTION OF CITATIONS
SEARCH DETAIL
...