Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
New Phytol ; 2024 May 04.
Article in English | MEDLINE | ID: mdl-38702970

ABSTRACT

Plants employ a diversity of reproductive safeguarding strategies to circumvent the challenge of pollen limitation. Focusing on southern African Lachenalia (Asparagaceae: Scilloideae), we test the hypothesis that the evolution of reproductive safeguarding traits (self-compatibility, autonomous selfing, bird pollination and clonal propagation) is favoured in species occupying conditions of low insect abundance imposed by critically infertile fynbos heathland vegetation and by flowering outside the austral spring insect abundance peak. We trace the evolution of these traits and selective regimes on a dated, multi-locus phylogeny of Lachenalia and assess their evolutionary associations using ordinary and phylogenetic regression. Ancestral state reconstructions identify an association with non-fynbos vegetation and spring flowering as ancestral in Lachenalia, the transition to fynbos vegetation and non-spring flowering taking place multiple times. They also show that self-compatibility, autofertility, bird pollination and production of multiple clonal offsets have evolved repeatedly. Regression models suggest that bird pollination and self-compatibility are selected for in fynbos and in non-spring flowering lineages, with autofertility being positively associated with non-spring flowering. These patterns support the interpretation of these traits as reproductive safeguarding adaptations under reduced insect pollinator abundance. We find no evidence to support the interpretation of clonal propagation as a reproductive safeguarding strategy.

2.
Am J Bot ; : e16315, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38695147

ABSTRACT

PREMISE: Increases in genome size in plants-often associated with larger, low-density stomata and greater water-use efficiency (WUE)-could affect plant ecophysiological and hydraulic function. Variation in plant genome size is often due to polyploidy, having occurred repeatedly in the austral sedge genus Schoenus in the Cape Floristic Region (CFR), while species in the other major schoenoid genus in the region, Tetraria, have smaller genomes. Comparing these genera is useful as they co-occur at the landscape level, under broadly similar bioclimatic conditions. We hypothesized that CFR Schoenus have greater WUE, with lower maximum stomatal conductance (gwmax) imposed by larger, less-dense stomata. METHODS: We investigated relationships between genome size and stomatal parameters in a phylogenetic context, reconstructing a phylogeny of CFR-occurring Schoeneae (Cyperaceae). Species' stomatal and functional traits were measured from field-collected and herbarium specimens. Carbon stable isotopes were used as an index of WUE. Genome size was derived from flow-cytometric measurements of leafy shoots. RESULTS: Evolutionary regressions demonstrated that stomatal size and density covary with genome size, positively and negatively, respectively, with genome size explaining 72-75% of the variation in stomatal size. Larger-genomed species had lower gwmax and C:N ratios, particularly in culms. CONCLUSIONS: We interpret differences in vegetative physiology between the genera as evidence of more-conservative strategies in CFR Schoenus compared to the more-acquisitive Tetraria. Because Schoenus have smaller, reduced leaves, they likely rely more on culm photosynthesis than Tetraria. Across the CFR Schoeneae, ecophysiology correlates with genome size, but confounding sources of trait variation limit inferences about causal relationships between traits.

3.
Ann Bot ; 133(5-6): 819-832, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38150535

ABSTRACT

BACKGROUND AND AIMS: In many systems, postfire vegetation recovery is characterized by temporal changes in plant species composition and richness. We attribute this to changes in resource availability with time since fire, with the magnitude of species turnover determined by the degree of resource limitation. Here, we test the hypothesis that postfire species turnover in South African fynbos heathland is powered by fire-modulated changes in nutrient availability, with the magnitude of turnover in nutrient-constrained fynbos being greater than in fertile renosterveld shrubland. We also test the hypothesis that floristic overlaps between fynbos and renosterveld are attributable to nutritional augmentation of fynbos soils immediately after fire. METHODS: We use vegetation survey data from two sites on the Cape Peninsula to compare changes in species richness and composition with time since fire. KEY RESULTS: Fynbos communities display a clear decline in species richness with time since fire, whereas no such decline is apparent in renosterveld. In fynbos, declining species richness is associated with declines in the richness of plant families having high foliar concentrations of nitrogen, phosphorus and potassium and possessing attributes that are nutritionally costly. In contrast, families that dominate late-succession fynbos possess adaptations for the acquisition and retention of sparse nutrients. At the family level, recently burnt fynbos is compositionally more similar to renosterveld than is mature fynbos. CONCLUSIONS: Our data suggest that nutritionally driven species turnover contributes significantly to fynbos community richness. We propose that the extremely low baseline fertility of fynbos soils serves to lengthen the nutritional resource axis along which species can differentiate and coexist, thereby providing the opportunity for low-nutrient extremophiles to coexist spatially with species adapted to more fertile soil. This mechanism has the potential to operate in any resource-constrained system in which episodic disturbance affects resource availability.


Subject(s)
Biodiversity , Soil , South Africa , Soil/chemistry , Nutrients/metabolism , Fires , Ecosystem , Nitrogen/metabolism , Phosphorus/metabolism , Phosphorus/analysis , Plants/metabolism
4.
Ann Bot ; 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37712853

ABSTRACT

BACKGROUND AND AIMS: Mediterranean ecosystems have a high vascular plant species richness relative to their surface area. This species richness (SR), representing the balance between speciation and extinction, has been attributed to multiple mechanisms that result in both high rates of speciation and/or low rates of extinction. An abiding question is, however, what is special about Mediterranean ecosystems that enables this high SR? Apart from long-term climatic stability of the region, SR has also been related to resource availability, the many individuals hypothesis, resource spatial heterogeneity, temporal heterogeneity and to biotic feedbacks. METHODS: Spatial patterns of species richness were related to climatic, edaphic, and biotic variables and spatial variability within the Greater Cape Floristic Region (GCFR) of South Africa. Boosted regression tree models were used to explore the strength of relationships between SR and environmental predictors related to each hypothesised mechanism. KEY RESULTS: Water availability (i.e., precipitation) was a stronger predictor of SR than potential evapotranspiration or temperature. Scarcity of nutrients was also related to SR. There was no indication that SR was related to the density of individuals and only temporal heterogeneity induced by fire was related to SR. Spatial heterogeneities of climatic, edaphic, and biotic variables were strongly associated with SR. Biotic interactions remain difficult to assess, although we have some evidence for a putative role in regulating SR. CONCLUSIONS: While the lack of ecosystem-resetting disturbances (e.g., glaciation) is undoubtedly a key requirement for high species accumulation, predictably, no one explanation holds the key to understanding SR. In the GCFR high SR is the product of a combination of adequate water, nutrient scarcity, spatial and temporal heterogeneity, and possibly biotic feedbacks.

5.
Syst Biol ; 72(4): 753-766, 2023 08 07.
Article in English | MEDLINE | ID: mdl-37098166

ABSTRACT

Species delimitation in the genomic era has focused predominantly on the application of multiple analytical methodologies to a single massive parallel sequencing (MPS) data set, rather than leveraging the unique but complementary insights provided by different classes of MPS data. In this study, we demonstrate how the use of two independent MPS data sets, a sequence capture data set and a single-nucleotide polymorphism (SNP) data set generated via genotyping-by-sequencing, enables the resolution of species in three complexes belonging to the grass genus Ehrharta, whose strong population structure and subtle morphological variation limit the effectiveness of traditional species delimitation approaches. Sequence capture data are used to construct a comprehensive phylogenetic tree of Ehrharta and to resolve population relationships within the focal clades, while SNP data are used to detect patterns of gene pool sharing across populations, using a novel approach that visualizes multiple values of K. Given that the two genomic data sets are independent, the strong congruence in the clusters they resolve provides powerful ratification of species boundaries in all three complexes studied. Our approach is also able to resolve a number of single-population species and a probable hybrid species, both of which would be difficult to detect and characterize using a single MPS data set. Overall, the data reveal the existence of 11 and five species in the E. setacea and E. rehmannii complexes, with the E. ramosa complex requiring further sampling before species limits are finalized. Despite phenotypic differentiation being generally subtle, true crypsis is limited to just a few species pairs and triplets. We conclude that, in the absence of strong morphological differentiation, the use of multiple, independent genomic data sets is necessary in order to provide the cross-data set corroboration that is foundational to an integrative taxonomic approach. [Species delimitation; genotyping-by-sequencing; population structure; integrative taxonomy; cryptic species; Ehrharta (Poaceae).].


Subject(s)
Genome , Genomics , Phylogeny , Polymorphism, Single Nucleotide/genetics , Biological Variation, Population , Species Specificity
6.
Mol Ecol ; 30(1): 175-192, 2021 01.
Article in English | MEDLINE | ID: mdl-33152114

ABSTRACT

While the tempo of diversification in biodiversity hotspots has received much attention, the spatial scale of diversification has often been overlooked. Addressing this deficiency requires understanding the drivers of population divergence and the spatial scales at which they operate in species-rich clades and ecosystems. South Africa's Succulent Karoo (SK) hotspot provides an excellent system for such research, being both compact (ca. 110,000 km2 ) and home to spectacular in-situ radiations, such as the ruschioid Aizoaceae. Here we use GBS to document genetic structure in two co-occurring ruschioid species, at both coarse (>10 km) and fine (<500 m) spatial scales. Where Ruschia burtoniae shows strong between-population genetic differentiation and no gene flow, Conophytum calculus shows weak differentiation, with high levels of admixture suggesting recent or ongoing gene flow. Community analysis and transplant experiments reveal that R. burtoniae occupies a narrow, low-pH edaphic niche, and at scales of a few hundred metres, areas of elevated genetic turnover correspond to patches of edaphically unsuitable habitat. In contrast, C. calculus occupies a broader niche and exhibits isolation-by-distance without a habitat effect. We suggest that edaphic specialisation, coupled with highly restricted seed and pollen dispersal in heterogeneous landscapes, has played a major role in driving rapid diversification at small spatial scales in this system. However, the contrasting patterns in our study species show that these factors do not influence all organisms uniformly, being strongly modulated by lineage-specific traits that influence both the spatial scale of gene flow and habitat specificity.


Subject(s)
Ecosystem , Gene Flow , Biodiversity
7.
PLoS One ; 15(5): e0233597, 2020.
Article in English | MEDLINE | ID: mdl-32453786

ABSTRACT

While biodiversity hotspots are typically identified on the basis of species number per unit area, their exceptional richness is often attributed, either implicitly or explicitly, to high diversification rates. High species concentrations, however, need not reflect rapid diversification, with the diversity of some hotspots accumulating at modest rates over long timespans. Here we explore the relationship between diversification in time vs. diversification in space and develop the concept of diversification density to describe the spatial scale of species accumulation in a clade. We investigate how plant height is associated with both aspects of diversification in Alooideae, a large plant subfamily with its center of diversity in the Greater Cape Floristic Region. We first reconstruct a time-calibrated phylogeny for Alooideae and demonstrate an evolutionary tendency towards reduced plant height. While plant height does not correlate with diversification rate across Alooideae it does so with diversification per unit space: clades of small plants tend to have the highest diversification densities. Furthermore, we find that diversification in time vs. space are uncorrelated. Our results show that diversification rate and density can be decoupled, and suggest that while some biodiversity hotspots might have been generated by high diversification rates, others are the product of high diversification density.


Subject(s)
Biodiversity , Biological Evolution , Plants/genetics , Tracheophyta/genetics , Genetic Speciation , Phylogeny , Plants/classification , Tracheophyta/classification
8.
Syst Biol ; 69(4): 774-794, 2020 07 01.
Article in English | MEDLINE | ID: mdl-31730194

ABSTRACT

Species selection, the effect of heritable traits in generating between-lineage diversification rate differences, provides a valuable conceptual framework for understanding the relationship between traits, diversification, and phylogenetic tree shape. An important challenge, however, is that the nature of real diversification landscapes-curves or surfaces which describe the propensity of species-level lineages to diversify as a function of one or more traits-remains poorly understood. Here, we present a novel, time-stratified extension of the QuaSSE model in which speciation/extinction rate is specified as a static or temporally shifting Gaussian or skewed-Gaussian function of the diversification trait. We then use simulations to show that the generally imbalanced nature of real phylogenetic trees, as well as their generally greater than expected frequency of deep branching events, are typical outcomes when diversification is treated as a dynamic, trait-dependent process. Focusing on four basic models (Gaussian-speciation with and without background extinction; skewed-speciation; Gaussian-extinction), we also show that particular features of the species selection regime produce distinct tree shape signatures and that, consequently, a combination of tree shape metrics has the potential to reveal the species selection regime under which a particular lineage diversified. We evaluate this idea empirically by comparing the phylogenetic trees of plant lineages diversifying within climatically and geologically stable environments of the Greater Cape Floristic Region, with those of lineages diversifying in environments that have experienced major change through the Late Miocene-Pliocene. Consistent with our expectations, the trees of lineages diversifying in a dynamic context are less balanced, show a greater concentration of branching events close to the present, and display stronger diversification rate-trait correlations. We suggest that species selection plays an important role in shaping phylogenetic trees but recognize the need for an explicit probabilistic framework within which to assess the likelihoods of alternative diversification scenarios as explanations of a particular tree shape. [Cape flora; diversification landscape; environmental change; gamma statistic; species selection; time-stratified QuaSSE model; trait-dependent diversification; tree imbalance.].


Subject(s)
Classification/methods , Models, Biological , Phylogeny , Computer Simulation , Genetic Speciation , Plants/classification
9.
New Phytol ; 223(4): 1809-1819, 2019 09.
Article in English | MEDLINE | ID: mdl-31177527

ABSTRACT

Phenotypic plasticity facilitates species persistence across resource gradients but may be limited in low-resource environments requiring resource conservation. We investigated the tradeoff between trait plasticity and resource conservatism across a biome boundary characterized by high turnover in nutrient and light availability, and whether this contributes to the maintenance of alternative stable states. Differences in plasticity were determined by comparing species' leaf and foliar nutritional trait responses to light, represented by leaf area index (LAI), and soil nutrient availability across forest-shrubland boundaries in South Africa. Although forest had higher LAI and soil nutrient availability than shrubland, forest species experienced greater resource variation. With increasing LAI and nutrient availability, forest species increased their leaf size, specific leaf area and leaf area/stem length, and decreased their foliar [N] and [K]. Although these responses are indicative of plasticity, shrubland species appeared to lack plasticity as evidenced by limited trait variation with environmental heterogeneity. Inhabiting diverse light environments imposed by forests probably selects for plasticity, whereas light-saturated, fire-prone, nutrient-poor environments that select for conservative leaf traits and below-ground investments compromise plasticity in shrubland species. This pattern suggests a tradeoff between trait plasticity and resource conservatism, which may support the stability of alternative vegetation states.


Subject(s)
Adaptation, Physiological , Conservation of Natural Resources , Quantitative Trait, Heritable , Forests , Light , Phenotype , Plant Leaves/physiology , Plant Leaves/radiation effects
10.
New Phytol ; 216(1): 24-31, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28850182

ABSTRACT

Explaining the variation in diversification rate across groups of plants has long been an important goal of botanists. In plants, complex scenarios involving a combination of extrinsic opportunities and intrinsic traits have been used to explain rapid diversification in certain groups. However, we feel that a very simple trait has been neglected from theories of plant diversification, namely plant height. Here, we argue that decreasing plant size should generally lead to an increase in speciation rate and a decrease in extinction rate. Theory suggests that all population genetic processes involved in speciation are influenced by plant size and its correlates, including seed dispersal distance, population size, generation time and the spatial scale at which plants perceive environmental heterogeneity. In addition, several of these variables, notably population size, also influence rates of extinction. We support our arguments with an empirical analysis showing that plant height is indeed negatively correlated with net diversification rate across families of angiosperms. Finally, we outline how the finer aspects of our hypothesis could be tested, at both micro- and macroevolutionary scales. In addition to strengthening our understanding of the effect of plant size on evolutionary processes, such a research agenda should contribute novel insights to speciation theory in general.


Subject(s)
Biodiversity , Plants/anatomy & histology , Extinction, Biological , Genetic Speciation , Genetics, Population , Plants/genetics
11.
Am Nat ; 189(6): 684-699, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28514635

ABSTRACT

Specialization to extreme selective situations promotes the acquisition of traits whose coadaptive integration may compromise evolutionary flexibility and adaptability. We test this idea in the context of the foliar stoichiometry of plants native to the South African Cape. Whereas foliar concentrations of nitrogen, phosphorus (P), potassium (K), calcium, magnesium, and sodium showed strong phylogenetic signal, as did the foliar ratios of these nutrients to P, the same was not true of the corresponding soil values. In addition, although foliar traits were often related to soil values, the coefficients of determination were consistently low. These results identify foliar stoichiometry as having a strong genetic component, with variation in foliar nutrient concentrations, especially [P] and [K], being identified as potentially adaptive. Comparison of stoichiometric variation across 11 similarly aged clades revealed consistently low foliar nutrient concentrations in lineages showing specialization to extremely low-nutrient fynbos heathlands. These lineages also display lower rates of evolution of these traits as well as a reduced tendency for foliar [P] to track soil [P]. Reduced evolutionary lability and adaptability in the nutritional traits of fynbos-specialist lineages may explain the floristic distinctness of the fynbos flora and implies a reduced scope for edaphically driven ecological speciation.


Subject(s)
Nitrogen , Phosphorus , Phylogeny , Soil/chemistry , Plant Leaves , Plant Physiological Phenomena
12.
PLoS One ; 10(9): e0137847, 2015.
Article in English | MEDLINE | ID: mdl-26422465

ABSTRACT

In the context of molecularly-dated phylogenies, inferences informed by ancestral habitat reconstruction can yield valuable insights into the origins of biomes, palaeoenvironments and landforms. In this paper, we use dated phylogenies of 12 plant clades from the Cape Floristic Region (CFR) in southern Africa to test hypotheses of Neogene climatic and geomorphic evolution. Our combined dataset for the CFR strengthens and refines previous palaeoenvironmental reconstructions based on a sparse, mostly offshore fossil record. Our reconstructions show remarkable consistency across all 12 clades with regard to both the types of environments identified as ancestral, and the timing of shifts to alternative conditions. They reveal that Early Miocene land surfaces of the CFR were wetter than at present and were dominated by quartzitic substrata. These conditions continue to characterize the higher-elevation settings of the Cape Fold Belt, where they have fostered the persistence of ancient fynbos lineages. The Middle Miocene (13-17 Ma) saw the development of perennial to weakly-seasonal arid conditions, with the strongly seasonal rainfall regime of the west coast arising ~6.5-8 Ma. Although the Late Miocene may have seen some exposure of the underlying shale substrata, the present-day substrate diversity of the CFR lowlands was shaped by Pliocene-Pleistocene events. Particularly important was renewed erosion, following the post-African II uplift episode, and the reworking of sediments on the coastal platform as a consequence of marine transgressions and tectonic uplift. These changes facilitated adaptive radiations in some, but not all, lineages studied.


Subject(s)
Biological Evolution , Climate , Ecosystem , Fossils , Phylogeny , Plants/classification , Africa, Southern , Biodiversity , Flowers/classification , Fossils/history , History, Ancient , Plant Physiological Phenomena , Rain , Seasons
13.
New Phytol ; 207(2): 368-376, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25708902

ABSTRACT

The rugged topography of the Cape Floristic Region (CFR), South Africa, is frequently invoked to explain the spectacular radiation of the Cape flora, but the mechanisms involved remain unclear. Where recent authors emphasize the importance of elevation gradients as stimuli for ecological speciation, earlier workers stressed the role of topography as an isolating mechanism, particularly in montane lineages. Using six Cape plant lineages, we tested whether elevation niches are phylogenetically conserved. We then assessed whether high-elevation species are more consistently range-restricted than low-elevation species, and whether high-elevation sisters show stronger range exclusivity (allopatry) and weaker ecological and phenotypic differentiation, suggestive of nonecological speciation. Elevation niches tend to be phylogenetically conserved. Also, high-elevation species are more consistently range-restricted than low-elevation species, potentially explaining the generally stronger range exclusivity of high-elevation sisters. While the high-elevation zone is less homogeneous ecologically, more data are required to demonstrate that high-elevation sister species show generally weaker ecological and phenotypic differentiation. Topographic complexity promotes geographical isolation at high elevations, thereby providing opportunities for nonecological, vicariant speciation. While recognizing the need for additional data, we suggest that the upland and lowland floras of the CFR may differ with regard to predominant speciation mode.


Subject(s)
Altitude , Biodiversity , Biological Evolution , Geological Phenomena , Magnoliopsida/genetics , Phenotype , Phylogeny , Adaptation, Physiological , Climate , Ecology , Ecosystem , Genetic Speciation , South Africa
14.
Oecologia ; 175(4): 1129-42, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24972698

ABSTRACT

The significance of soil water redistribution by roots and nocturnal transpiration for nutrient acquisition were assessed for deep-rooted 3-year-old leguminous Aspalathus linearis shrubs of the Cape Floristic Region (South Africa). We hypothesised that hydraulic redistribution and nocturnal transpiration facilitate nutrient acquisition by releasing moisture in shallow soil to enable acquisition of shallow-soil nutrients during the summer drought periods and by driving water fluxes from deep to shallow soil powering mass-flow nutrient acquisition, respectively. A. linearis was supplied with sub-surface (1-m-deep) irrigation rates of 0, 2 or 4 L day(-1 )plant(-1). Some plants were unfertilized, whilst others were surface- or deep-fertilized (1 m depth) with Na(15)NO3 and CaP/FePO4. We also supplied deuterium oxide ((2)H2O) at 1 m depth at dusk and measured its predawn redistribution to shallow soil and plant stems. Hydraulic redistribution of deep water was substantial across all treatments, accounting for 34-72 % of surface-soil predawn moisture. Fourteen days after fertilization, the surface-fertilized plants exhibited increased hydraulic redistribution and increased (15)N and P acquisition with higher rates of deep-irrigation. Deep-fertilization also increased hydraulic redistribution to surface soils, although these plants additionally accumulated (2)H2O in their stem tissue overnight, probably due to nocturnal transpiration. Plants engaged in nocturnal transpiration also increased (15)N and P acquisition from deep fertilizer sources. Thus, both nocturnal transpiration and hydraulic redistribution increased acquisition of shallow soil N and P, possibly through a combination of increased nutrient availability and mobility.


Subject(s)
Aspalathus/physiology , Plant Transpiration , Plant Roots/physiology , Soil , South Africa
15.
BMC Evol Biol ; 14: 27, 2014 Feb 13.
Article in English | MEDLINE | ID: mdl-24524661

ABSTRACT

BACKGROUND: The role of tectonic uplift in stimulating speciation in South Africa's only alpine zone, the Drakensberg, has not been explicitly examined. Tectonic processes may influence speciation both through the creation of novel habitats and by physically isolating plant populations. We use the Afrotemperate endemic daisy genus Macowania to explore the timing and mode (geographic versus adaptive) of speciation in this region. Between sister species pairs we expect high morphological divergence where speciation has happened in sympatry (adaptive) while with geographic (vicariant) speciation we may expect to find less morphological divergence and a greater degree of allopatry. A dated molecular phylogenetic hypothesis for Macowania elucidates species' relationships and is used to address the potential impact of uplift on diversification. Morphological divergence of a small sample of reproductive and vegetative characters, used as a proxy for adaptive divergence, is measured against species' range distributions to estimate mode of speciation across two subclades in the genus. RESULTS: The Macowania crown age is consistent with the hypothesis of post-uplift diversification, and we find evidence for both vicariant and adaptive speciation between the two subclades within Macowania. Both subclades exhibit strong signals of range allopatry, suggesting that geographic isolation was important in speciation. One subclade, associated with dry, rocky environments at high altitudes, shows very little morphological and ecological differentiation but high range allopatry. The other subclade occupies a greater variety of habitats and exhibits far greater morphological differentiation, but contains species with overlapping distribution ranges. CONCLUSIONS: Species in Macowania are likely to have diversified in response to tectonic uplift, and we invoke uplift and uplift-mediated erosion as the main drivers of speciation. The greater relative morphological divergence in sympatric species of Macowania indicates that speciation in the non-sympatric taxa may not have required obvious adaptive differences, implying that simple geographic isolation was the driving force for speciation ('neutral speciation').


Subject(s)
Asteraceae/genetics , Biological Evolution , Ecosystem , Genetic Speciation , Adaptation, Biological , Asteraceae/classification , Asteraceae/physiology , Environment , Phylogeny , South Africa
16.
Am J Bot ; 101(2): 300-7, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24509796

ABSTRACT

PREMISE OF THE STUDY: The radiation of a lineage and its rise to ecological dominance are distinct phenomena and driven by different processes. For example, paleoecological data has been used to show that the Cretaceous angiosperm radiation did not coincide with their rise to dominance. Using a phylogenetic approach, we here explored the evolution of C4 grasses and evaluated whether the diversification of this group and its rise to ecological dominance in the late Miocene were decoupled. METHODS: We assembled a matrix including 675 grass species of the PACMAD clade and 2784 characters (ITS and ndhF) to run a molecular dating analysis using three fossils as reference calibrations. We coded species as C3 vs. C4 and reconstructed ancestral states under maximum likelihood. We used the program BiSSE to test whether rates of diversification are correlated with photosynthetic pathway and whether the radiation of C4 lineages preceded or coincided with their rise to ecological dominance from ∼10 Ma. KEY RESULTS: C4 grass lineages first originated around 35 Ma at the time of the Eocene-Oligocene transition. Accelerated diversification of C4 lineages did not coincide with their rise to ecological dominance. CONCLUSIONS: C4-dominated grasslands have expanded only since the Late Miocene and Pliocene. The initial diversification of their biotic elements can be tracked back as far as the Eocene-Oligocene transition. We suggest that shifts in taxonomic diversification and ecological dominance were stimulated by different factors, as in the case of the early angiosperms in the Cretaceous.


Subject(s)
Biological Evolution , Ecosystem , Genetic Variation , Photosynthesis/genetics , Phylogeny , Plant Dispersal , Poaceae/genetics , Ecology , Fossils
17.
J Exp Bot ; 65(1): 159-68, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24231035

ABSTRACT

Transpiration may enhance mass-flow of nutrients to roots, especially in low-nutrient soils or where the root system is not extensively developed. Previous work suggested that nitrogen (N) may regulate mass-flow of nutrients. Experiments were conducted to determine whether N regulates water fluxes, and whether this regulation has a functional role in controlling the mass-flow of nutrients to roots. Phaseolus vulgaris were grown in troughs designed to create an N availability gradient by restricting roots from intercepting a slow-release N source, which was placed at one of six distances behind a 25 µm mesh from which nutrients could move by diffusion or mass-flow (termed 'mass-flow' treatment). Control plants had the N source supplied directly to their root zone so that N was available through interception, mass-flow, and diffusion (termed 'interception' treatment). 'Mass-flow' plants closest to the N source exhibited 2.9-fold higher transpiration (E), 2.6-fold higher stomatal conductance (gs), 1.2-fold higher intercellular [CO2] (Ci), and 3.4-fold lower water use efficiency than 'interception' plants, despite comparable values of photosynthetic rate (A). E, gs, and Ci first increased and then decreased with increasing distance from the N source to values even lower than those of 'interception' plants. 'Mass-flow' plants accumulated phosphorus and potassium, and had maximum concentrations at 10mm from the N source. Overall, N availability regulated transpiration-driven mass-flow of nutrients from substrate zones that were inaccessible to roots. Thus when water is available, mass-flow may partially substitute for root density in providing access to nutrients without incurring the costs of root extension, although the efficacy of mass-flow also depends on soil nutrient retention and hydraulic properties.


Subject(s)
Nitrogen/pharmacology , Phaseolus/physiology , Plant Transpiration/physiology , Water/metabolism , Biological Transport , Biomass , Carbon Dioxide/metabolism , Nitrogen/metabolism , Phaseolus/growth & development , Phosphorus/metabolism , Plant Leaves/growth & development , Plant Leaves/physiology , Plant Roots/growth & development , Plant Roots/physiology , Plant Stomata/growth & development , Plant Stomata/physiology , Potassium/metabolism , Soil/chemistry
18.
Am J Bot ; 100(12): 2494-508, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24302693

ABSTRACT

PREMISE OF THE STUDY: The broad austral distribution of Schoeneae is almost certainly a product of long-distance dispersal. Owing to the inadequacies of existing phylogenetic data and a lack of rigorous biogeographic analysis, relationships within the tribe remain poorly resolved and its pattern of radiation and dispersal uncertain. We employed an expanded sampling of taxa and markers and a rigorous analytic approach to address these limitations. We evaluated the roles of geography and ecology in stimulating the initial radiation of the group and its subsequent dispersal across the southern hemisphere. METHODS: A dated tree was reconstructed using reversible-jump Markov chain Monte Carlo (MCMC) with a polytomy prior and molecular dating, applied to data from two nuclear and three cpDNA regions. Ancestral areas and habitats were inferred using dispersal-extinction-cladogenesis models. KEY RESULTS: Schoeneae originated in Australia in the Paleocene. The existence of a "hard" polytomy at the base of the clade reflects the rapid divergence of six principal lineages ca. 50 Ma, within Australia. From this ancestral area, Schoeneae have traversed the austral oceans with remarkable frequency, a total of 29 distinct dispersal events being reported here. Dispersal rates between landmasses are not explicable in terms of the geographical distances separating them. Transoceanic dispersal generally involved habitat stasis. CONCLUSIONS: Although the role of dispersal in explaining global distribution patterns is now widely accepted, the apparent ease with which such dispersal may occur has perhaps been under-appreciated. In Schoeneae, transoceanic dispersal has been remarkably frequent, with ecological opportunity, rather than geography, being most important in dictating dispersal patterns.


Subject(s)
Cyperaceae/genetics , Ecosystem , Evolution, Molecular , Genetic Speciation , Oceans and Seas , Phylogeny , Plant Dispersal , Australia , DNA, Plant , Geography , Models, Genetic
19.
Am J Bot ; 98(7): 1113-27, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21700801

ABSTRACT

PREMISE OF THE STUDY: Evolutionary significance of the Compositae capitulum and variation in its structure is poorly understood, although it may permit flexibility in sexual expression. Optimal sex ratio differs with life-history and reproductive strategy. We explore how the genus Ifloga and related members of southern African Gnaphalieae achieved different sex ratios, and the associations of these ratios with annual and perennial life history. METHODS: Sex allocation was measured using the male to female ratio (M/F), a novel approximator of the pollen to ovule ratio (P/O). Life-history (annuality/perenniality), capitulum structure, capitular sexual system, and M/F were reconstructed on time-proportional phylogenies. Trait associations were examined using phylogenetically independent contrasts (PICs). KEY RESULTS: Annual taxa have strongly female-biased capitula, as measured by M/F, and either gynomonoecious or monoecious sexual systems, while perennials have equal or male-biased capitula that are hermaphroditic or monoecious. These results are largely supported by PIC analysis. Different sexual systems afford differing flexibility in sex allocation, with hermaphrodites having the least, and monoecious taxa the greatest, range in M/F. Within Ifloga, the anomalous capitulum evolved in an annual, gynomonoecious ancestor, followed by two independent gains of monoecy. Two subsequent gains of perenniality occurred within a monoecious sublineage. CONCLUSIONS: Different life histories have divergent sex allocation optima and are strongly associated with different sexual systems in gnaphalioid daisies. An anomalous capitulum structure in Ifloga may have facilitated the evolution of monoecy, which in turn may be linked to the evolution of life-history diversity in the genus.


Subject(s)
Asteraceae/anatomy & histology , Asteraceae/physiology , Flowers/anatomy & histology , Flowers/physiology , Phylogeny , Asteraceae/genetics , Ecosystem , Quantitative Trait, Heritable , Reproduction/physiology , Species Specificity
20.
BMC Evol Biol ; 11: 39, 2011 Feb 08.
Article in English | MEDLINE | ID: mdl-21303519

ABSTRACT

BACKGROUND: The best documented survival responses of organisms to past climate change on short (glacial-interglacial) timescales are distributional shifts. Despite ample evidence on such timescales for local adaptations of populations at specific sites, the long-term impacts of such changes on evolutionary significant units in response to past climatic change have been little documented. Here we use phylogenies to reconstruct changes in distribution and flowering ecology of the Cape flora--South Africa's biodiversity hotspot--through a period of past (Neogene and Quaternary) changes in the seasonality of rainfall over a timescale of several million years. RESULTS: Forty-three distributional and phenological shifts consistent with past climatic change occur across the flora, and a comparable number of clades underwent adaptive changes in their flowering phenology (9 clades; half of the clades investigated) as underwent distributional shifts (12 clades; two thirds of the clades investigated). Of extant Cape angiosperm species, 14-41% have been contributed by lineages that show distributional shifts consistent with past climate change, yet a similar proportion (14-55%) arose from lineages that shifted flowering phenology. CONCLUSIONS: Adaptive changes in ecology at the scale we uncover in the Cape and consistent with past climatic change have not been documented for other floras. Shifts in climate tolerance appear to have been more important in this flora than is currently appreciated, and lineages that underwent such shifts went on to contribute a high proportion of the flora's extant species diversity. That shifts in phenology, on an evolutionary timescale and on such a scale, have not yet been detected for other floras is likely a result of the method used; shifts in flowering phenology cannot be detected in the fossil record.


Subject(s)
Biodiversity , Biological Evolution , Climate Change , Phylogeny , Ecology/methods , Magnoliopsida/classification , Magnoliopsida/genetics , South Africa
SELECTION OF CITATIONS
SEARCH DETAIL
...