Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Environ Res ; 250: 118537, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38408627

ABSTRACT

E-waste recycling is an increasingly important activity that contributes to reducing the burden of end-of-life electronic and electrical apparatus and allows for the EU's transition to a circular economy. This study investigated the exposure levels of selected persistent organic pollutants (POPs) in workers from e-waste recycling facilities across Europe. The concentrations of seven polychlorinated biphenyls (PCBs) and eight polybrominated diphenyl ethers (PBDEs) congeners were measured by GC-MS. Workers were categorized into five groups based on the type of e-waste handled and two control groups. Generalized linear models were used to assess the determinants of exposure levels among workers. POPs levels were also assessed in dust and silicone wristbands (SWB) and compared with serum. Four PCB congeners (CB 118, 138, 153, and 180) were frequently detected in serum regardless of worker's category. With the exception of CB 118, all tested PCBs were significantly higher in workers compared to the control group. Controls working in the same company as occupationally exposed (Within control group), also displayed higher levels of serum CB 180 than non-industrial controls with no known exposures to these chemicals (Outwith controls) (p < 0.05). BDE 209 was the most prevalent POP in settled dust (16 µg/g) and SWB (220 ng/WB). Spearman correlation revealed moderate to strong positive correlations between SWB and dust. Increased age and the number of years smoked cigarettes were key determinants for workers exposure. Estimated daily intake through dust ingestion revealed that ΣPCB was higher for both the 50th (0.03 ng/kg bw/day) and 95th (0.09 ng/kg bw/day) percentile exposure scenarios compared to values reported for the general population. This study is one of the first to address the occupational exposure to PCBs and PBDEs in Europe among e-waste workers through biomonitoring combined with analysis of settled dust and SWB. Our findings suggest that e-waste workers may face elevated PCB exposure and that appropriate exposure assessments are needed to establish effective mitigation strategies.


Subject(s)
Dust , Electronic Waste , Halogenated Diphenyl Ethers , Occupational Exposure , Polychlorinated Biphenyls , Recycling , Humans , Dust/analysis , Occupational Exposure/analysis , Europe , Electronic Waste/analysis , Halogenated Diphenyl Ethers/blood , Halogenated Diphenyl Ethers/analysis , Adult , Male , Middle Aged , Polychlorinated Biphenyls/blood , Polychlorinated Biphenyls/analysis , Female , Persistent Organic Pollutants/blood , Silicones , Environmental Monitoring/methods
2.
Chemosphere ; 346: 140613, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37944767

ABSTRACT

The study aims to reveal the exposure to perfluoroalkyl substances (PFAS) in workers in different industry sectors with exposures to hexavalent chromium (Cr(VI)). The PFAS exposure of in total 172 individuals from 4 countries was assessed by the determination of 8 perfluoroalkyl carboxylic acids and 4 perfluoroalkyl sulfonic acids in plasma samples. The participants were 52 chrome plating workers, 43 welders, 3 surface treating workers and 74 workers without any occupational Cr exposure as controls. Significant differences between workers with Cr exposure and controls were found for the perfluoroalkyl sulfonic acids, particularly for perfluorooctane sulfonic acid (PFOS). The median and maximum levels were, respectively, 4.83 and 789 µg/l for chrome plating workers, 4.97 and 1513 µg/l for welders, and 3.65 and 13.9 µg/l for controls. The considerably high PFOS exposure in Cr platers and welders can be explained by the former application of PFOS as mist suppressants in electroplating baths, which resulted in an exposure of the directly involved operators, but also of welders performing maintenance and repair service at these workplaces.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Occupational Exposure , Humans , Chromates , Metal Workers , Sulfonic Acids
3.
Int J Hyg Environ Health ; 248: 114099, 2023 03.
Article in English | MEDLINE | ID: mdl-36528954

ABSTRACT

Within the EU human biomonitoring initiative (HBM4EU), a targeted, multi-national study on occupational exposure to hexavalent chromium (Cr(VI)) was performed. Cr(VI) is currently regulated in EU under REACH (Registration, Evaluation, Authorisation and Restriction of Chemicals) and under occupational safety and health (OSH) legislation. It has recently been subject to regulatory actions to improve its risk management in European workplaces. Analysis of the data obtained within the HBM4EU chromates study provides support both for the implementation of these regulatory actions and for national enforcement programs and may also contribute to the updating of occupational limit values (OELs) and biological limit values for Cr(VI). It also provides useful insights on the contribution of different risk management measures (RMMs) to further reduce the exposure to Cr(VI) and may support the evaluation of applications for authorisation under REACH. Findings on chrome platers' additional per- and polyfluoroalkyl substances (PFAS) exposure highlight the need to also pay attention to this substance group in the metals sector. A survey performed to evaluate the policy relevance of the HBM4EU chromates study findings supports the usefulness of the study results. According to the responses received from the survey, the HBM4EU chromates study was able to demonstrate the added value of the human biomonitoring (HBM) approach in assessment and management of occupational exposure to Cr(VI). For future occupational studies, we emphasise the need for engagement of policy makers and regulators throughout the whole research process to ensure awareness, relevance and uptake of the results in future policies.


Subject(s)
Occupational Exposure , Occupational Health , Humans , Chromates , Occupational Exposure/analysis , Chromium/analysis , Policy
4.
Toxics ; 10(8)2022 Aug 18.
Article in English | MEDLINE | ID: mdl-36006162

ABSTRACT

A study was conducted within the European Human Biomonitoring Initiative (HBM4EU) to characterize occupational exposure to Cr(VI). Herein we present the results of biomarkers of genotoxicity and oxidative stress, including micronucleus analysis in lymphocytes and reticulocytes, the comet assay in whole blood, and malondialdehyde and 8-oxo-2'-deoxyguanosine in urine. Workers from several Cr(VI)-related industrial activities and controls from industrial (within company) and non-industrial (outwith company) environments were included. The significantly increased genotoxicity (p = 0.03 for MN in lymphocytes and reticulocytes; p < 0.001 for comet assay data) and oxidative stress levels (p = 0.007 and p < 0.001 for MDA and 8-OHdG levels in pre-shift urine samples, respectively) that were detected in the exposed workers over the outwith company controls suggest that Cr(VI) exposure might still represent a health risk, particularly, for chrome painters and electrolytic bath platers, despite the low Cr exposure. The within-company controls displayed DNA and chromosomal damage levels that were comparable to those of the exposed group, highlighting the relevance of considering all industry workers as potentially exposed. The use of effect biomarkers proved their capacity to detect the early biological effects from low Cr(VI) exposure, and to contribute to identifying subgroups that are at higher risk. Overall, this study reinforces the need for further re-evaluation of the occupational exposure limit and better application of protection measures. However, it also raised some additional questions and unexplained inconsistencies that need follow-up studies to be clarified.

5.
Article in English | MEDLINE | ID: mdl-35886663

ABSTRACT

Diisocyanates have long been a leading cause of occupational asthma in Europe, and recently, they have been subjected to a restriction under the REACH regulations. As part of the European Human Biomonitoring project (HBM4EU), we present a study protocol designed to assess occupational exposure to diisocyanates in five European countries. The objectives of the study are to assess exposure in a number of sectors that have not been widely reported on in the past (for example, the manufacturing of large vehicles, such as in aerospace; the construction sector, where there are potentially several sources of exposure (e.g., sprayed insulation, floor screeds); the use of MDI-based glues, and the manufacture of spray adhesives or coatings) to test the usability of different biomarkers in the assessment of exposure to diisocyanates and to provide background data for regulatory purposes. The study will collect urine samples (analysed for diisocyanate-derived diamines and acetyl-MDI-lysine), blood samples (analysed for diisocyanate-specific IgE and IgG antibodies, inflammatory markers, and diisocyanate-specific Hb adducts for MDI), and buccal cells (micronucleus analysis) and measure fractional exhaled nitric oxide. In addition, occupational hygiene measurements (air monitoring and skin wipe samples) and questionnaire data will be collected. The protocol is harmonised across the participating countries to enable pooling of data, leading to better and more robust insights and recommendations.


Subject(s)
Biological Monitoring , Occupational Exposure , Biomarkers , Environmental Monitoring/methods , Humans , Isocyanates/analysis , Isocyanates/toxicity , Mouth Mucosa , Occupational Exposure/analysis
6.
Environ Res ; 214(Pt 1): 113758, 2022 11.
Article in English | MEDLINE | ID: mdl-35764127

ABSTRACT

Occupational exposures to hexavalent Chromium (Cr(VI)) can occur in welding, hot working stainless steel processing, chrome plating, spray painting and coating activities. Recently, within the human biomonitoring for Europe initiative (HBM4EU), a study was performed to assess the suitability of different biomarkers to assess the exposure to Cr(VI) in various job tasks. Blood-based biomarkers may prove useful when more specific information on systemic and intracellular bioavailability is necessary. To this aim, concentrations of Cr in red blood cells (RBC-Cr) and in plasma (P-Cr) were analyzed in 345 Cr(VI) exposed workers and 175 controls to understand how these biomarkers may be affected by variable levels of exposure and job procedures. Compared to controls, significantly higher RBC-Cr levels were observed in bath plating and paint application workers, but not in welders, while all the 3 groups had significantly greater P-Cr concentrations. RBC-Cr and P-Cr in chrome platers showed a high correlation with Cr(VI) in inhalable dust, outside respiratory protective equipment (RPE), while such correlation could not be determined in welders. In platers, the use of RPE had a significant impact on the relationship between blood biomarkers and Cr(VI) in inhalable and respirable dust. Low correlations between P-Cr and RBC-Cr may reflect a difference in kinetics. This study showed that Cr-blood-based biomarkers can provide information on how workplace exposure translates into systemic availability of Cr(III) (extracellular, P-Cr) and Cr(VI) (intracellular, RBC-Cr). Further studies are needed to fully appreciate their use in an occupational health and safety context.


Subject(s)
Air Pollutants, Occupational , Occupational Exposure , Biomarkers , Chromates , Chromium , Dust , Environmental Monitoring , Humans
7.
Metabolites ; 12(4)2022 Apr 18.
Article in English | MEDLINE | ID: mdl-35448548

ABSTRACT

Exposure to hexavalent chromium Cr(VI) may occur in several occupational activities, placing workers in many industries at risk for potential related health outcomes. Untargeted metabolomics was applied to investigate changes in metabolic pathways in response to Cr(VI) exposure. We obtained our data from a study population of 220 male workers with exposure to Cr(VI) and 102 male controls from Belgium, Finland, Poland, Portugal and the Netherlands within the HBM4EU Chromates Study. Urinary metabolite profiles were determined using liquid chromatography mass spectrometry, and differences between post-shift exposed workers and controls were analyzed using principal component analysis. Based on the first two principal components, we observed clustering by industrial chromate application, such as welding, chrome plating, and surface treatment, distinct from controls and not explained by smoking status or alcohol use. The changes in the abundancy of excreted metabolites observed in workers reflect fatty acid and monoamine neurotransmitter metabolism, oxidative modifications of amino acid residues, the excessive formation of abnormal amino acid metabolites and changes in steroid and thyrotropin-releasing hormones. The observed responses could also have resulted from work-related factors other than Cr(VI). Further targeted metabolomics studies are needed to better understand the observed modifications and further explore the suitability of urinary metabolites as early indicators of adverse effects associated with exposure to Cr(VI).

8.
Article in English | MEDLINE | ID: mdl-35329370

ABSTRACT

Work-related exposures in industrial processing of chromate (chrome plating, surface treatment and welding) raise concern regarding the health risk of hexavalent chromium (Cr(VI)). In this study, performed under the HBM4EU project, we focused on better understanding the determinants of exposure and recognising how risk management measures (RMMs) contribute to a reduction in exposure. HBM and occupational hygiene data were collected from 399 workers and 203 controls recruited in nine European countries. Urinary total chromium (U-Cr), personal inhalable and respirable dust of Cr and Cr(VI) and Cr from hand wipes were collected. Data on the RMMs were collected by questionnaires. We studied the association between different exposure parameters and the use of RMMs. The relationship between exposure by inhalation and U-Cr in different worker groups was analysed using regression analysis and found a strong association. Automatisation of Cr electroplating dipping explained lower exposure levels in platers. The use of personal protective equipment resulted in lower U-Cr levels in welding, bath plating and painting. An effect of wearing gloves was observed in machining. An effect of local exhaust ventilation and training was observed in welding. Regression analyses showed that in platers, exposure to air level of 5 µg/m3 corresponds to U-Cr level of 7 µg/g creatinine. In welders, the same inhalation exposure resulted in lower U-Cr levels reflecting toxicokinetic differences of different chromium species.


Subject(s)
Air Pollutants, Occupational , Occupational Exposure , Welding , Air Pollutants, Occupational/analysis , Chromates/analysis , Chromium/analysis , Environmental Monitoring , Humans , Occupational Exposure/analysis
9.
Environ Res ; 204(Pt A): 111984, 2022 03.
Article in English | MEDLINE | ID: mdl-34492275

ABSTRACT

Exposure to hexavalent chromium [Cr(VI)] may occur in several occupational activities, e.g., welding, Cr(VI) electroplating and other surface treatment processes. The aim of this study was to provide EU relevant data on occupational Cr(VI) exposure to support the regulatory risk assessment and decision-making. In addition, the capability and validity of different biomarkers for the assessment of Cr(VI) exposure were evaluated. The study involved nine European countries and involved 399 workers in different industry sectors with exposures to Cr(VI) such as welding, bath plating, applying or removing paint and other tasks. We also studied 203 controls to establish a background in workers with no direct exposure to Cr(VI). We applied a cross-sectional study design and used chromium in urine as the primary biomonitoring method for Cr(VI) exposure. Additionally, we studied the use of red blood cells (RBC) and exhaled breath condensate (EBC) for biomonitoring of exposure to Cr(VI). Personal measurements were used to study exposure to inhalable and respirable Cr(VI) by personal air sampling. Dermal exposure was studied by taking hand wipe samples. The highest internal exposures were observed in the use of Cr(VI) in electrolytic bath plating. In stainless steel welding the internal Cr exposure was clearly lower when compared to plating activities. We observed a high correlation between chromium urinary levels and air Cr(VI) or dermal total Cr exposure. Urinary chromium showed its value as a first approach for the assessment of total, internal exposure. Correlations between urinary chromium and Cr(VI) in EBC and Cr in RBC were low, probably due to differences in kinetics and indicating that these biomonitoring approaches may not be interchangeable but rather complementary. This study showed that occupational biomonitoring studies can be conducted successfully by multi-national collaboration and provide relevant information to support policy actions aiming to reduce occupational exposure to chemicals.


Subject(s)
Air Pollutants, Occupational , Occupational Exposure , Air Pollutants, Occupational/analysis , Biological Monitoring , Chromates , Chromium/analysis , Cross-Sectional Studies , Environmental Monitoring , Humans , Occupational Exposure/analysis
10.
Article in English | MEDLINE | ID: mdl-34948598

ABSTRACT

Workers involved in the processing of electronic waste (e-waste) are potentially exposed to toxic chemicals. If exposure occurs, this may result in uptake and potential adverse health effects. Thus, exposure surveillance is an important requirement for health risk management and prevention of occupational disease. Human biomonitoring by measurement of specific biomarkers in body fluids is considered as an effective method of exposure surveillance. The aim of this study is to investigate the internal exposure of workers processing e-waste using a human biomonitoring approach, which will stimulate improved work practices and contribute to raising awareness of potential hazards. This exploratory study in occupational exposures in e-waste processing is part of the European Human Biomonitoring Initiative (HBM4EU). Here we present a study protocol using a cross sectional survey design to study worker's exposures and compare these to the exposure of subjects preferably employed in the same company but with no known exposure to industrial recycling of e-waste. The present study protocol will be applied in six to eight European countries to ensure standardised data collection. The target population size is 300 exposed and 150 controls. Biomarkers of exposure for the following chemicals will be used: chromium, cadmium and lead in blood and urine; brominated flame retardants and polychlorobiphenyls in blood; mercury, organophosphate flame retardants and phthalates in urine, and chromium, cadmium, lead and mercury in hair. In addition, the following effect biomarkers will be studied: micronuclei, epigenetic, oxidative stress, inflammatory markers and telomere length in blood and metabolomics in urine. Occupational hygiene sampling methods (airborne and settled dust, silicon wristbands and handwipes) and contextual information will be collected to facilitate the interpretation of the biomarker results and discuss exposure mitigating interventions to further reduce exposures if needed. This study protocol can be adapted to future European-wide occupational studies.


Subject(s)
Electronic Waste , Occupational Exposure , Biological Monitoring , Cross-Sectional Studies , Dust/analysis , Environmental Monitoring , Humans , Occupational Exposure/analysis , Recycling
11.
Int J Mol Sci ; 22(22)2021 Nov 12.
Article in English | MEDLINE | ID: mdl-34830117

ABSTRACT

Disease relapse and therapy resistance remain key challenges in treating multiple myeloma. Underlying (epi-)mutational events can promote myelomagenesis and contribute to multi-drug and apoptosis resistance. Therefore, compounds inducing ferroptosis, a form of iron and lipid peroxidation-regulated cell death, are appealing alternative treatment strategies for multiple myeloma and other malignancies. Both ferroptosis and the epigenetic machinery are heavily influenced by oxidative stress and iron metabolism changes. Yet, only a limited number of epigenetic enzymes and modifications have been identified as ferroptosis regulators. In this study, we found that MM1 multiple myeloma cells are sensitive to ferroptosis induction and epigenetic reprogramming by RSL3, irrespective of their glucocorticoid-sensitivity status. LC-MS/MS analysis revealed the formation of non-heme iron-histone complexes and altered expression of histone modifications associated with DNA repair and cellular senescence. In line with this observation, EPIC BeadChip measurements of significant DNA methylation changes in ferroptotic myeloma cells demonstrated an enrichment of CpG probes located in genes associated with cell cycle progression and senescence, such as Nuclear Receptor Subfamily 4 Group A member 2 (NR4A2). Overall, our data show that ferroptotic cell death is associated with an epigenomic stress response that might advance the therapeutic applicability of ferroptotic compounds.


Subject(s)
Cellular Senescence , DNA Methylation , DNA, Neoplasm/metabolism , Ferroptosis , Histones/metabolism , Multiple Myeloma/metabolism , Neoplasm Proteins/metabolism , Histone Code , Humans , Multiple Myeloma/pathology
12.
Int J Hyg Environ Health ; 236: 113799, 2021 07.
Article in English | MEDLINE | ID: mdl-34303131

ABSTRACT

Occupational exposure to hexavalent chromium (Cr(VI)) can cause serious adverse health effects such as lung cancer and irritation of the skin and airways. Although assessment of chromium (Cr) in urine is not specific for Cr(VI) exposure, the total amount of Cr in urine is the most used marker of exposure for biomonitoring of Cr(VI). The purpose of this systematic review was fourfold: (1) to assess current and recent biomonitoring levels in subjects occupationally exposed to Cr(VI), with a focus on urinary Cr levels at the end of a working week, (2) to identify variables influencing these biomonitoring levels, (3) to identify how urinary Cr levels correlate with other Cr(VI) exposure markers and (4) to identify gaps in the current research. To address these purposes, unpublished and published biomonitoring data were consulted: (i) unpublished biomonitoring data comprised urinary Cr levels (n = 3799) of workers from different industries in Belgium collected during 1998-2018, in combination with expert scores indicating jobs with Cr exposure and (ii) published biomonitoring data was extracted by conducting a systematic literature review. A linear mixed effect model was applied on the unpublished biomonitoring data, showing a decreasing time trend of 30% in urinary Cr levels. Considering the observed decreasing time trend, only articles published between January 1, 2010 and September 30, 2020 were included in the systematic literature search to assess current and recent biomonitoring levels. Twenty-five studies focusing on human biomonitoring of exposure to Cr(VI) in occupational settings were included. Overall, the results showed a decreasing time trend in urinary Cr levels and the need for more specific Cr(VI) biomarkers. Furthermore, this review indicated the importance of improved working conditions, efficient use of personal protective equipment, better exposure control and increased risk awareness to reduce Cr levels in biological matrices. Further investigation of the contribution of the different exposure routes is needed, so that better guidance on the use of control measures can be provided. In addition, this review support the call for more harmonization of human biomonitoring.


Subject(s)
Biological Monitoring , Occupational Exposure , Chromium/analysis , Humans , Industry , Occupational Exposure/analysis
13.
Article in English | MEDLINE | ID: mdl-31739404

ABSTRACT

BACKGROUND: Antimony (Sb) trioxide and antimony trisulfide are "2B: Possibly carcinogenic to humans" and "3: Unclassifiable" according to the International Agency for Research on Cancer (IARC). The U.S. National Toxicology Program (NTP) concluded that antimony trioxide "is reasonably anticipated to be a human carcinogen based on studies in rats and mice". We investigated the cancer hazard of antimony compounds for workers, a population with high exposure to antimony substances. METHODS: Using the "Guidelines for performing systematic reviews in the development of toxicity factors" (Texas Commission on Environmental Quality (TCEQ) 2017) as a guidance, we established a human and an animal toxicology data stream in Medline and ToxLine. Data from this review were applied in a human health risk assessment. RESULTS: A final pool of 10 occupational and 13 animal toxicology articles resulted after application of TCEQ guidelines. CONCLUSIONS: Antimony carcinogenicity evidence involving workers is inadequate, based on confounding, small sample sizes, incomparability across studies, and inadequate reference populations. An increased lung cancer risk cannot be excluded. Evidence for lung neoplasms caused by antimony trioxide inhalation in experimental animals is sufficient. Overall, carcinogenicity in workers is probable (International Agency for Research on Cancer (IARC) 2A). It remains unclear from what occupational exposure duration and dose this effect arises and whether exposure threshold values should be reconsidered.


Subject(s)
Antimony/toxicity , Carcinogens/toxicity , Neoplasms/chemically induced , Occupational Exposure/adverse effects , Risk Assessment , Animals , Humans , Mice , Models, Animal , Rats , Texas
SELECTION OF CITATIONS
SEARCH DETAIL
...