Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
3.
Article in English | MEDLINE | ID: mdl-38354459

ABSTRACT

Inhalation of chlorine gas, with subsequent hydrolysis in the airway and lungs to form hydrochloric acid (HCl) and hypochlorous acid (HOCl), can cause pulmonary edema (i.e., fluid build-up in the lungs), pulmonary inflammation (with or without infection), respiratory failure, and death. The HOCl produced from chlorine is known to react with tyrosine to form adducts via electrophilic aromatic substitution, resulting in 3-chlorotyrosine and 3,5-dichlorotyrosine adducts. While several analysis methods are available for determining these adducts, each method has significant disadvantages. Hence, a simple and sensitive ultra-high performance liquid chromatography-tandem mass spectroscopy (UHPLC-MS/MS) method was developed for the determination of chlorotyrosine adducts. The sample preparation involves base hydrolysis of isolated plasma proteins to form 2-chlorophenol (CP) from monochlorotyrosine adducts and 2,6-dichlorophenol (2,6-DCP), from dichlorotyrosine adducts, as markers of chlorine exposure. The chlorophenols are extracted with cyclohexane prior to UHPLC-MS/MS analysis. The method produced excellent sensitivity for 2,6-DCP with a limit of detection of 2.2 µg/kg, calibration curve linearity extending from 0.054-54 mg/kg (R2 ≥ 0.9997 and %RA > 94), and accuracy and precision of 100 ± 14 %, and <15 % relative standard deviation, respectively. The sensitivity of the method for 2-CP was relatively poor, so it was used only as a secondary marker for severe chlorine exposure. The method successfully detected elevated levels of 2,6-DCP from hypochlorite-spiked plasma protein and plasma protein isolated from chlorine-exposed rats.


Subject(s)
Chlorine , Chlorophenols , Tyrosine/analogs & derivatives , Rats , Animals , Chlorine/analysis , Chlorine/chemistry , Tandem Mass Spectrometry/methods , Liquid Chromatography-Mass Spectrometry , Chromatography, Liquid , Blood Proteins
4.
Eur J Respir Med ; 6(1): 389-397, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38390523

ABSTRACT

Objective: Human and preclinical studies of sulfur mustard (SM)-induced acute and chronic lung injuries highlight the role of unremitting inflammation. We assessed the utility of targeting the novel DAMP and TLR4 ligand, eNAMPT (extracellular nicotinamide phosphoribosyltransferase), utilizing a humanized mAb (ALT-100) in rat models of SM exposure. Methods: Acute (SM 4.2 mg/kg, 24 hrs), subacute (SM 0.8 mg/kg, day 7), subacute (SM 2.1 mg/kg, day 14), and chronic (SM 1.2 mg/kg, day 29) SM models were utilized. Results: Each SM model exhibited significant increases in eNAMPT expression (lung homogenates) and increased levels of phosphorylated NFkB and NOX4. Lung fibrosis (Trichrome staining) was observed in both sub-acute and chronic SM models in conjunction with elevated smooth muscle actin (SMA), TGFß, and IL-1ß expression. SM-exposed rats receiving ALT-100 (1 or 4 mg/kg, weekly) exhibited increased survival, highly significant reductions in histologic/biochemical evidence of lung inflammation and fibrosis (Trichrome staining, decreased pNFkB, SMA, TGFß, NOX4), decreased airways strictures, and decreased plasma cytokine levels (eNAMPT, IL-6, IL-1ß. TNFα). Conclusion: The highly druggable, eNAMPT/TLR4 signaling pathway is a key contributor to SM-induced ROS production, inflammatory lung injury and fibrosis. The ALT-100 mAb is a potential medical countermeasure to address the unmet need to reduce SM-associated lung pathobiology/mortality.

SELECTION OF CITATIONS
SEARCH DETAIL