Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(24)2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38139038

ABSTRACT

p38 Mitogen-Activated Protein Kinase (MAPK) cascades are central regulators of numerous physiological cellular processes, including stress response signaling. In C. elegans, mitochondrial dysfunction activates a PMK-3/p38 MAPK signaling pathway (MAPKmt), but its functional role still remains elusive. Here, we demonstrate the induction of MAPKmt in worms deficient in the lonp-1 gene, which encodes the worm ortholog of mammalian mitochondrial LonP1. This induction is subjected to negative regulation by the ATFS-1 transcription factor through the CREB-binding protein (CBP) ortholog CBP-3, indicating an interplay between both activated MAPKmt and mitochondrial Unfolded Protein Response (UPRmt) surveillance pathways. Our results also reveal a genetic interaction in lonp-1 mutants between PMK-3 kinase and the ZIP-2 transcription factor. ZIP-2 has an established role in innate immunity but can also modulate the lifespan by maintaining mitochondrial homeostasis during ageing. We show that in lonp-1 animals, ZIP-2 is activated in a PMK-3-dependent manner but does not confer increased survival to pathogenic bacteria. However, deletion of zip-2 or pmk-3 shortens the lifespan of lonp-1 mutants, suggesting a possible crosstalk under conditions of mitochondrial perturbation that influences the ageing process. Furthermore, loss of pmk-3 specifically diminished the extreme heat tolerance of lonp-1 worms, highlighting the crucial role of PMK-3 in the heat shock response upon mitochondrial LONP-1 inactivation.


Subject(s)
Caenorhabditis elegans Proteins , Mitogen-Activated Protein Kinase 14 , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism , Mammals/metabolism , Mitogen-Activated Protein Kinase 14/metabolism , Mitogen-Activated Protein Kinases/genetics , Mitogen-Activated Protein Kinases/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
2.
Neuroimage ; 166: 71-78, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29107121

ABSTRACT

As longitudinal and multi-site studies become increasingly frequent in neuroimaging, maintaining longitudinal and inter-scanner consistency of brain parcellation has become a major challenge due to variation in scanner models and/or image acquisition protocols across scanners and sites. We present a new automated segmentation method specifically designed to achieve a consistent parcellation of anatomical brain structures in such heterogeneous datasets. Our method combines a site-specific atlas creation strategy with a state-of-the-art multi-atlas anatomical label fusion framework. Site-specific atlases are computed such that they preserve image intensity characteristics of each site's scanner and acquisition protocol, while atlas pairs share anatomical labels in a way consistent with inter-scanner acquisition variations. This harmonization of atlases improves inter-study and longitudinal consistency of segmentations in the subsequent consensus labeling step. We tested this approach on a large sample of older adults from the Baltimore Longitudinal Study of Aging (BLSA) who had longitudinal scans acquired using two scanners that vary with respect to vendor and image acquisition protocol. We compared the proposed method to standard multi-atlas segmentation for both cross-sectional and longitudinal analyses. The harmonization significantly reduced scanner-related differences in the age trends of ROI volumes, improved longitudinal consistency of segmentations, and resulted in higher across-scanner intra-class correlations, particularly in the white matter.


Subject(s)
Atlases as Topic , Brain/diagnostic imaging , Magnetic Resonance Imaging/methods , Multicenter Studies as Topic/standards , Neuroimaging/standards , Aged , Aged, 80 and over , Aging/pathology , Brain/pathology , Cross-Sectional Studies , Female , Humans , Longitudinal Studies , Male , Middle Aged
3.
Sci Rep ; 7(1): 775, 2017 04 10.
Article in English | MEDLINE | ID: mdl-28396592

ABSTRACT

Therapeutic targeting of tumor cells with drug nanocarriers relies upon successful interaction with membranes and efficient cell internalization. A further consideration is that engineered nanomaterials should not damage healthy tissues upon contact. A critical factor in this process is the external coating of drug delivery nanodevices. Using in silico, in vitro and in vivo studies, we show for the first time that magnetic nanoparticles coated with polyarabic acid have superior imaging, therapeutic, and biocompatibility properties. We demonstrate that polyarabic acid coating allows for efficient penetration of cell membranes and internalization into breast cancer cells. Polyarabic acid also allows reversible loading of the chemotherapeutic drug Doxorubicin, which upon release suppresses tumor growth in vivo in a mouse model of breast cancer. Furthermore, these nanomaterials provide in vivo contrasting properties, which directly compare with commercial gadolinium-based contrasting agents. Finally, we report excellent biocompatibility, as these nanomaterial cause minimal, if any cytotoxicity in vitro and in vivo. We thus propose that magnetic nanodevices coated with polyarabic acid offer a new avenue for theranostics efforts as efficient drug carriers, while providing excellent contrasting properties due to their ferrous magnetic core, which can help the future design of nanomaterials for cancer imaging and therapy.


Subject(s)
Coated Materials, Biocompatible/chemistry , Drug Carriers , Drug Delivery Systems , Gum Arabic/chemistry , Magnetite Nanoparticles/chemistry , Molecular Imaging , Polymers/chemistry , Theranostic Nanomedicine , Animals , Antibiotics, Antineoplastic/administration & dosage , Cell Line, Tumor , Cell Membrane/chemistry , Doxorubicin/administration & dosage , Humans , Magnetic Resonance Imaging , Mice , Molecular Conformation , Molecular Dynamics Simulation , Theranostic Nanomedicine/methods , Xenograft Model Antitumor Assays
4.
Magn Reson Imaging ; 23(2): 349-51, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15833644

ABSTRACT

This paper explores the correlation between different microstructural characteristics of porous sedimentary rocks and the flow properties of a Newtonian infiltrating fluid. Preliminary results of displacement propagator measurements of brine solution flowing through two types of sedimentary rock cores are reported. The two types of rocks, Bentheimer and Portland, are characterized by different porosities, pore-size distributions and permeabilities. Propagators have been measured for brine flow rates of 1 and 5 ml/min. Significant differences are seen between the propagators recorded for the two rocks, and these are related to the spatial distribution of porosity within these porous media.


Subject(s)
Geologic Sediments/chemistry , Magnetic Resonance Spectroscopy , Porosity , Permeability , Rheology , Salts
SELECTION OF CITATIONS
SEARCH DETAIL
...