Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Zoonoses Public Health ; 65(1): 96-102, 2018 02.
Article in English | MEDLINE | ID: mdl-28688117

ABSTRACT

West Nile virus (WNV) and Usutu virus (USUV) are arboviruses that are maintained in enzootic transmission cycles between mosquitoes and birds and are occasionally transmitted to mammals. As arboviruses are currently expanding their geographic range and emerging in often unpredictable locations, surveillance is considered an important element of preparedness. To determine whether sera collected from resident and migratory birds in the Netherlands as part of avian influenza surveillance would also represent an effective source for proactive arbovirus surveillance, a random selection of such sera was screened for WNV antibodies using a commercial ELISA. In addition, sera of jackdaws and carrion crows captured for previous experimental infection studies were added to the selection. Of the 265 screened serum samples, 27 were found to be WNV-antibody-positive, and subsequent cross-neutralization experiments using WNV and USUV confirmed that five serum samples were positive for only WNV-neutralizing antibodies and seven for only USUV. The positive birds consisted of four Eurasian coots (Fulica atra) and one carrion crow (Corvus corone) for WNV, of which the latter may suggest local presence of the virus, and only Eurasian coots for USUV. As a result, the screening of a small selection of serum samples originally collected for avian influenza surveillance demonstrated a seroprevalence of 1.6% for WNV and 2.8% for USUV, suggesting that this sustained infrastructure could serve as a useful source for future surveillance of arboviruses such as WNV and USUV in the Netherlands.


Subject(s)
Bird Diseases/virology , Flavivirus Infections/veterinary , Flavivirus , West Nile virus , Animal Migration , Animals , Antibodies, Viral/blood , Bird Diseases/blood , Bird Diseases/epidemiology , Birds , Cell Line , Enzyme-Linked Immunosorbent Assay/methods , Enzyme-Linked Immunosorbent Assay/veterinary , Flavivirus Infections/epidemiology , Flavivirus Infections/virology , Netherlands , Population Surveillance , Zoonoses
3.
Euro Surveill ; 20(12)2015 Mar 26.
Article in English | MEDLINE | ID: mdl-25846491

ABSTRACT

Highly pathogenic avian influenza (HPAI) A(H5N8) viruses that emerged in poultry in east Asia since 2010 spread to Europe and North America by late 2014. Despite detections in migrating birds, the role of free-living wild birds in the global dispersal of H5N8 virus is unclear. Here, wild bird sampling activities in response to the H5N8 virus outbreaks in poultry in the Netherlands are summarised along with a review on ring recoveries. HPAI H5N8 virus was detected exclusively in two samples from ducks of the Eurasian wigeon species, among 4,018 birds sampled within a three months period from mid-November 2014. The H5N8 viruses isolated from wild birds in the Netherlands were genetically closely related to and had the same gene constellation as H5N8 viruses detected elsewhere in Europe, in Asia and in North America, suggesting a common origin. Ring recoveries of migratory duck species from which H5N8 viruses have been isolated overall provide evidence for indirect migratory connections between East Asia and Western Europe and between East Asia and North America. This study is useful for better understanding the role of wild birds in the global epidemiology of H5N8 viruses. The need for sampling large numbers of wild birds for the detection of H5N8 virus and H5N8-virus-specific antibodies in a variety of species globally is highlighted, with specific emphasis in north-eastern Europe, Russia and northern China.


Subject(s)
Animals, Wild/virology , Birds/virology , Disease Outbreaks/veterinary , Influenza A virus/isolation & purification , Influenza A virus/pathogenicity , Influenza in Birds/virology , Animal Migration , Animals , Influenza A virus/classification , Netherlands/epidemiology , Phylogeny , RNA, Viral/genetics , Sentinel Surveillance , Sequence Analysis, DNA
4.
J Theor Biol ; 216(4): 425-42, 2002 Jun 21.
Article in English | MEDLINE | ID: mdl-12151259

ABSTRACT

The endolymph flow inside the semicircular ducts is analytically investigated by considering a system of two hydrodynamically interconnected ducts. Rotation of this system adds an amount of motion (momentum) to parts of it. This results in an endolymph flow in generally all vestibular parts. The "external impulses" are the impulses which emerge by rotation of exclusively a particular vestibular part. The real impulses can be calculated from a set of equations which contain the external impulses. Analytical expressions are derived for the initial velocities in the ducts and for the maximum endolymph displacements. These formulae contain the external impulses and the ratios of: (1) the radii of crus commune and ducts (gamma), (2) the lengths of crus commune and ducts (lambda). It was proven that an interconnected system composed of two ducts, and also a system composed of two such semicircular duct systems, behaves as a pure rotation transducer (like a single duct does), also when it is rotated excentrically. Duct systems with polygonal and circular geometries were used to evaluate whether an optimal value of lambda would exist (gamma was already considered elsewhere). Optimum values of lambda in a range of about 0.10-0.52 were found. This rather wide range of values agrees with values from measurements. Optimization of an interconnected duct system appeared to be equal to optimization of a system composed of separate ducts.


Subject(s)
Endolymph/physiology , Models, Biological , Semicircular Canals/physiology , Animals , Motion , Rheology , Rotation , Semicircular Canals/anatomy & histology
5.
J Theor Biol ; 216(4): 409-24, 2002 Jun 21.
Article in English | MEDLINE | ID: mdl-12151258

ABSTRACT

The classical representation of the semicircular duct system consists of three separate duct circuits. The ducts are, however, in reality, hydrodynamically interconnected. Muller & Verhagen (1988a,b) derived equations for the mechanical behaviour of an interconnected system with three ducts (anterior, posterior and horizontal). An analytical solution of these equations would, however, be too complex to provide surveyable formulae. A system of two interconnected ducts avoids this complexity whilst keeping the essentials of the coupling of ducts intact. The solution of the equation of motion leads to expressions for time constants and maximal endolymph excursions which are functions of morphological parameters, viz. the ratios of radii (gamma) and lengths (lambda) of the common vestibular part (crus commune or utriculus) and the ducts. The system possesses two short time constants which are shown to have similar values. The maximum endolymph displacements in the two ducts after a steplike stimulus are the products of the respective initial velocities and combinations of time constants. The initial velocities depend strongly on the position of the labyrinth with respect to the excitating rotation vector. Measured data of gamma and lambda are compared with the theoretical results. For gamma, excellent agreement was found. lambda is treated elsewhere.


Subject(s)
Endolymph/physiology , Models, Biological , Semicircular Canals/physiology , Animals , Motion , Phylogeny , Rheology , Semicircular Canals/anatomy & histology
6.
J Theor Biol ; 216(4): 443-59, 2002 Jun 21.
Article in English | MEDLINE | ID: mdl-12151260

ABSTRACT

In the majority of vertebrates, the horizontal duct of the vestibular system lies approximately in the yawing plane of the head. The positioning of the vertical ducts, however, is not in the pitch- and roll planes but the vertical ducts generally lie under an angle of about 30-45 degrees relative to the medial plane. Using the equations for a hydrodynamically interconnected two-duct system, optimal positions of the vertical and horizontal ducts in different vertebrate groups can be derived. It was stated that the mean response of the vertical ducts should be optimized. This leads to a symmetrical positioning of the vertical ducts with respect to the medial plane. In all observed vertebrate groups, a solution of mu =(pi-alpha)/2 is found (mu is the angle of the vertical ducts relative to the medial plane, alpha is the angle between the vertical duct planes). For alpha=90 degrees, this provides an equal sensitivity for pitch- and roll- movements. For alpha>90 degrees, a larger sensitivity for pitch movements is obtained, at the expense of a lower sensitivity for roll movements. It is argued that the angle alpha between the vertical ducts may vary from 90 to 120 degrees. In most vertebrates, the centre of mass is stabilized by e.g. fins, tri- or quadrupedal stability, a crawling body or upside-down resting positions (e.g. bats). Birds are generally biped, so in walking they are also rather sensitive to roll. These features are related to labyrinth positioning in the head.


Subject(s)
Head/anatomy & histology , Models, Biological , Semicircular Canals/anatomy & histology , Vertebrates/anatomy & histology , Animals , Endolymph/physiology , Motion , Rheology , Semicircular Canals/physiology , Vertebrates/physiology
7.
J Theor Biol ; 212(4): 521-33, 2001 Oct 21.
Article in English | MEDLINE | ID: mdl-11597183

ABSTRACT

Previously, predictions of the maximum size of biological objects based on oxygen availability have been made for both zero and infinite water velocity around the object. In reality, however, water velocity is always intermediate between zero and infinity. We predicted maximum size and optimal shape of biological objects, pending the velocity of water around them. We assumed oxygen inside the object to be transported by diffusion and outside the object by diffusion and convection. Fick's first law of diffusion describes the inner transport. For the outer transport, we relied on semi-empirical relations between mass transport and flow conditions (Friedlander's equations). To keep mathematical complexity acceptable, we restricted ourselves to the analysis of a sphere and a cylinder in cross flow. If water velocity is low, a spherical shape is most favourable for gas exchange. If water velocity is high, an elongated and flattened shape is more favourable. A size-dependent intermediate velocity exists where shape does not matter (10(-4) m s(-1)for teleost embryos). Teleost embryos are typically exposed to flow velocities equal to or larger than 10(-4) m s(-1), making an elongated shape more favourable than a spherical one. Although teleost eggs are typically spherical, the oxygen-consuming embryos inside are indeed elongated.


Subject(s)
Convection , Embryo, Mammalian/ultrastructure , Embryo, Nonmammalian , Oxygen/metabolism , Animals , Embryo, Mammalian/metabolism , Models, Biological , Morphogenesis/physiology
8.
J Theor Biol ; 204(1): 113-33, 2000 May 07.
Article in English | MEDLINE | ID: mdl-10772852

ABSTRACT

All members of the subphylum "Vertebrata" display the characteristics of the vertebrate body plan. These characteristics become apparent during the phylotypic period, in which all vertebrate embryos have a similar body shape and internal organization. Phylogenetic constraints probably limit the morphological variation during the phylotypic period. Physical laws, however, also limit growth and morphogenesis in embryos. We investigated to what extent oxygen availability-as a physical constraint-might limit morphological variation during embryonic development. This paper gives an analysis of time-dependent diffusion into spherical embryos without a circulatory system. Equilibrium appeared to settle in about 1.5 min in running water and in about 10min in stagnant water. Hence, steady-state conditions were assumed and expressions for maximum body size were obtained for spherical, cylindrical and sheet-like embryos in running water and spherical embyros in stagnant water. Predictions of the model based on literature data suggest that in running water-both for spherical, cylindrical and sheet-like embryos-diffusion alone suffices to cover the oxygen needs of a teleost embryo in its phylotypic period. The size of carp (Cyprinus carpio) and African catfish (Clarias gariepinus) embryos is very close to the predicted maximum. This suggests that in these species the development of a functional circulatory system is correlated with the onset of oxygen shortage. Oxygen availability is therefore a potentially important physical constraint on embryonic morphology, though in most species the circulatory system becomes functional well in advance of the onset of oxygen shortage and other demands than oxygen delivery (e.g. nutrient distribution, waste disposal, osmoregulation) might require the development of a circulatory system.


Subject(s)
Body Constitution/physiology , Fishes/embryology , Models, Biological , Animals , Diffusion , Morphogenesis/physiology , Oxygen Consumption/physiology , Species Specificity
9.
J Theor Biol ; 134(4): 473-501, 1988 Oct 21.
Article in English | MEDLINE | ID: mdl-3255007

ABSTRACT

1. A new concept of endolymph flow in the vertebrate vestibular system is presented. This approach describes quantitatively the flow in the entire system of three semicircular ducts interconnected by the utriculus and the crus commune. This approach is quite distinct from the classical theory in which the labyrinth is generally conceived to consist of three separate duct circuits. 2. The present approach shows the following set of distinct differences to the classical view: (a) In a labyrinth composed of three ducts perpendicular to each other the flow is non-zero in the other ducts when the labyrinth is rotated in the plane of a particular duct. (b) In a labyrinth with two equal ducts and with the duct planes under approximately 73 degrees the flow in one duct is zero when the rotation takes place in the plane of the other duct. Previous measurements of duct angles reflect this value surprisingly well. An obtuse or sharp angle between duct planes can lead to better performance of a particular labyrinth because the "external impulses" in the different ducts may amplify or compensate each other. (c) The behaviour of the flow in the entire labyrinth is a non-linear function of direction or rotation (cf. points (d), (e]. (d) Six time constants for the entire labyrinth can be distinguished (three long, three short); the flow in a particular duct is composed of six terms with these time constants. The composition of this flow and thus the relative importance of the terms depends on the positioning of the labyrinth with respect to the rotation vector. (e) The time constants also depend, for different labyrinths, on a shared influence of the dimensions of the ducts and the elastic properties of all three cupulae. (f) The forces in a particular duct depend also on the amount of motion the fluid will acquire in the other ducts. (g) The sensitivity of a particular duct depends also on the dimensions of the other parts in the vestibular system. 3. Equations for a system consisting of two ducts and for the classical single duct system are also given. Both systems are special cases of the three-duct system. The single duct equations are equivalent with equations given by Oman (1980) and Oman et al. (1987) which include the contribution of a wide utriculus. 4. The present theory of endolymph flow is mainly supported by the outcome of previously performed experiments concerning time constants and rotation of human subjects in different planes.(ABSTRACT TRUNCATED AT 400 WORDS)


Subject(s)
Endolymph/physiology , Labyrinthine Fluids/physiology , Semicircular Canals/physiology , Vertebrates/physiology , Animals , Ear, Inner/anatomy & histology , Models, Biological , Semicircular Canals/anatomy & histology
10.
J Theor Biol ; 134(4): 503-29, 1988 Oct 21.
Article in English | MEDLINE | ID: mdl-3255008

ABSTRACT

1. A mathematical treatment of the flow inside the vertebrate labyrinth is given. The main difference to former theories (e.g. the "torsion pendulum" theory) is that the entire system formed by the three semicircular ducts, interconnected by the crus commune and the utriculus, is considered, instead of a single duct circuit. 2. The theory consists of a geometrical description of a labyrinth rotating in space, the solution of the continuity equation, determination of the initial velocities in all the ducts in a "cupulometry" experiment and derivation of the equation of motion (e.o.m.). 3. Equations for a system consisting of two ducts and for the classical single-duct system are special cases of the three-duct system. 4. Three different methods for the solution of the e.o.m. are described: an analytical one, a Runge-Kutta simulation and an "asymptotic" method. The last method includes approximations of the solution of the e.o.m. on a long and a short time scale. Its advantage is that it gives an insight based on rather manageable formulae. 5. The physiological basis of the presented theory, biological applications and verification are given in a separate paper (Muller & Verhagen, 1988).


Subject(s)
Endolymph/physiology , Labyrinthine Fluids/physiology , Semicircular Canals/physiology , Vertebrates/physiology , Animals , Mathematics , Models, Biological
SELECTION OF CITATIONS
SEARCH DETAIL