Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Clin Neurophysiol ; 162: 41-52, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38555666

ABSTRACT

OBJECTIVE: We aimed to gain further insight into previously reported beneficial effects of subthalamic nucleus deep brain stimulation (STN-DBS) on visually-guided saccades by examining the effects of unilateral compared to bilateral stimulation, paradigm, and target eccentricity on saccades in individuals with Parkinson's disease (PD). METHODS: Eleven participants with PD and STN-DBS completed the visually-guided saccade paradigms with OFF, RIGHT, LEFT, and BOTH stimulation. Rightward saccade performance was evaluated for three paradigms and two target eccentricities. RESULTS: First, we found that BOTH and LEFT increased gain, peak velocity, and duration compared to OFF stimulation. Second, we found that BOTH and LEFT stimulation decreased latency during the gap and step paradigms but had no effect on latency during the overlap paradigm. Third, we found that RIGHT was not different compared to OFF at benefiting rightward saccade performance. CONCLUSIONS: Left unilateral and bilateral stimulation both improve the motor outcomes of rightward visually-guided saccades. Additionally, both improve latency, a cognitive-motor outcome, but only in paradigms when attention does not require disengagement from a present stimulus. SIGNIFICANCE: STN-DBS primarily benefits motor and cognitive-motor aspects of visually-guided saccades related to reflexive attentional shifting, with the latter only evident when the fixation-related attentional system is not engaged.


Subject(s)
Deep Brain Stimulation , Parkinson Disease , Saccades , Subthalamic Nucleus , Humans , Parkinson Disease/therapy , Parkinson Disease/physiopathology , Saccades/physiology , Subthalamic Nucleus/physiopathology , Deep Brain Stimulation/methods , Male , Female , Middle Aged , Aged , Photic Stimulation/methods
3.
Front Hum Neurosci ; 17: 1224611, 2023.
Article in English | MEDLINE | ID: mdl-37850040

ABSTRACT

Background: Antiparkinson medication and subthalamic nucleus deep brain stimulation (STN-DBS), two common treatments of Parkinson's disease (PD), effectively improve skeletomotor movements. However, evidence suggests that these treatments may have differential effects on eye and limb movements, although both movement types are controlled through the parallel basal ganglia loops. Objective: Using a task that requires both eye and upper limb movements, we aimed to determine the effects of medication and STN-DBS on eye and upper limb movement performance. Methods: Participants performed a visually-guided reaching task. We collected eye and upper limb movement data from participants with PD who were tested both OFF and ON medication (n = 34) or both OFF and ON bilateral STN-DBS while OFF medication (n = 11). We also collected data from older adult healthy controls (n = 14). Results: We found that medication increased saccade latency, while having no effect on reach reaction time (RT). Medication significantly decreased saccade peak velocity, while increasing reach peak velocity. We also found that bilateral STN-DBS significantly decreased saccade latency while having no effect on reach RT, and increased saccade and reach peak velocity. Finally, we found that there was a positive relationship between saccade latency and reach RT, which was unaffected by either treatment. Conclusion: These findings show that medication worsens saccade performance and benefits reaching performance, while STN-DBS benefits both saccade and reaching performance. We explore what the differential beneficial and detrimental effects on eye and limb movements suggest about the potential physiological changes occurring due to treatment.

5.
Mov Disord ; 38(3): 399-409, 2023 03.
Article in English | MEDLINE | ID: mdl-36691982

ABSTRACT

BACKGROUND: The gut microbiome is altered in several neurologic disorders, including Parkinson's disease (PD). OBJECTIVES: The aim is to profile the fecal gut metagenome in PD for alterations in microbial composition, taxon abundance, metabolic pathways, and microbial gene products, and their relationship with disease progression. METHODS: Shotgun metagenomic sequencing was conducted on 244 stool donors from two independent cohorts in the United States, including individuals with PD (n = 48, n = 47, respectively), environmental household controls (HC, n = 29, n = 30), and community population controls (PC, n = 41, n = 49). Microbial features consistently altered in PD compared to HC and PC subjects were identified. Data were cross-referenced to public metagenomic data sets from two previous studies in Germany and China to determine generalizable microbiome features. RESULTS: We find several significantly altered taxa between PD and controls within the two cohorts sequenced in this study. Analysis across global cohorts returns consistent changes only in Intestinimonas butyriciproducens. Pathway enrichment analysis reveals disruptions in microbial carbohydrate and lipid metabolism and increased amino acid and nucleotide metabolism in PD. Global gene-level signatures indicate an increased response to oxidative stress, decreased cellular growth and microbial motility, and disrupted intercommunity signaling. CONCLUSIONS: A metagenomic meta-analysis of PD shows consistent and novel alterations in functional metabolic potential and microbial gene abundance across four independent studies from three continents. These data reveal that stereotypic changes in the functional potential of the gut microbiome are a consistent feature of PD, highlighting potential diagnostic and therapeutic avenues for future research. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Gastrointestinal Microbiome , Parkinson Disease , Humans , Parkinson Disease/diagnosis , Metagenome/genetics , Cohort Studies , Gastrointestinal Microbiome/genetics , Feces
6.
Clin Neurophysiol ; 143: 145-153, 2022 11.
Article in English | MEDLINE | ID: mdl-35995722

ABSTRACT

OBJECTIVE: We examined whether previous inconsistent findings about the effect of anti-Parkinsonian medication on visually-guided saccades (VGS) were due to the use of different paradigms, which change the timing of fixation offset and target onset, or different target eccentricities. METHODS: Thirty-three participants with Parkinson's disease (PD) completed the VGS tasks OFF and ON medication, along with 13 healthy controls. Performance on 3 paradigms (gap, step, and overlap) and 2 target eccentricities was recorded. We used mixed models to determine the effect of medication, paradigm, and target eccentricity on saccade latency, gain, and peak velocity. RESULTS: First, we confirmed known paradigm effects on latency, and target eccentricity effects on gain and peak velocity in participants with PD. Second, latency was positively associated with OFF medication Movement Disorders Society - Unified Parkinson's Disease Rating Scale (MDS-UPDRS) motor score in PD. Third, medication prolonged latency for the larger target eccentricity across the 3 paradigms, while decreasing gain and peak velocity in the step paradigm across target eccentricities. CONCLUSIONS: Medication adversely affected and was not therapeutically beneficial for VGS. Previous inconsistencies may have resulted from chosen target eccentricity. SIGNIFICANCE: The negative medication effect on VGS may be clinically significant, as many activities in daily life require oculomotor control, inhibitory control, and visually-guided shifts of attention.


Subject(s)
Parkinson Disease , Eye Movements , Humans , Movement , Parkinson Disease/complications , Parkinson Disease/drug therapy , Saccades
7.
Neurol Ther ; 11(3): 1309-1318, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35776383

ABSTRACT

INTRODUCTION: Directional deep brain stimulation (d-DBS) axially displaces the volume of tissue activated (VTA) towards the intended target and away from neighboring structures potentially improving benefit and reducing side effects (SE) of stimulation. A clinical trial evaluating d-DBS demonstrated a wider therapeutic window (TW) with directional electrodes. While this seems advantageous, it remains unclear when and why directional stimulation is chosen clinically. To evaluate the implementation of d-DBS in our practice we examined the prevalence of and motivation for directional programming. METHODS: A retrospective review was completed in consecutive patients with Parkinson's disease (PD)/essential tremor (ET) implanted with the Abbott Infinity system from December 2016 to January 2020. At 3, 12, 24, and 36 months we extracted post-DBS stimulation parameters; use of directional electrodes and other advanced programming techniques; and reasons for directional programming. RESULTS: Fifty-six patients with PD and 18 patients with ET (104 and 33 leads, respectively) were identified. The numbers of patients programmed with a directional electrode in at least one DBS lead in PD and ET, respectively, were 22/56 (39%) and 13/18 (72%) at 3 months; 19/48 (40%) and 8/12 (67%) at 12 months; 12/31 (39%) and 5/8 (63%) at 24 months; and 6/9 (67%) and 1/2 (50%) at 36 months. In PD and ET, reasons for using directional stimulation were better symptom control, less SE, or combination of better symptom control/SE; additional reasons in ET were improved battery/TW%. CONCLUSION: Over a 36-month time period 39-68% of patients with PD and 50-72% of patients with ET had at least one lead programmed directionally in order to either improve symptom control or reduce side effects, an option not available with conventional omnidirectional stimulation. Initially directional electrodes were used in ET more frequently than PD, likely because of the less complex nature of programming for a monosymptomatic disorder. However, over time this shifted as we gained directional experience and sought solutions to reduce worsening symptoms.

8.
Front Neurol ; 12: 723476, 2021.
Article in English | MEDLINE | ID: mdl-34659089

ABSTRACT

Introduction: Up to 27% of individuals undergoing subthalamic nucleus deep brain stimulation (STN-DBS) have a genetic form of Parkinson's disease (PD). Glucocerebrosidase (GBA) mutation carriers, compared to sporadic PD, present with a more aggressive disease, less asymmetry, and fare worse on cognitive outcomes with STN-DBS. Evaluating STN intra-operative local field potentials provide the opportunity to assess and compare symmetry between GBA and non-GBA mutation carriers with PD; thus, providing insight into genotype and STN physiology, and eligibility for and programming of STN-DBS. The purpose of this pilot study was to test differences in left and right STN resting state beta power in non-GBA and GBA mutation carriers with PD. Materials and Methods: STN (left and right) resting state local field potentials were recorded intraoperatively from 4 GBA and 5 non-GBA patients with PD while off medication. Peak beta power expressed as a ratio to total beta power (peak beta ratio) was compared between STN hemispheres and groups while co-varying for age, age of disease onset, and disease severity. Results: Peak beta ratio was significantly different between the left and the right STN for the GBA group (p < 0.01) but not the non-GBA group (p = 0.56) after co-varying for age, age of disease onset, and disease severity. Discussion: Peak beta ratio in GBA mutation carriers was more asymmetric compared with non-mutation carriers and this corresponded with the degree of clinical asymmetry as measured by rating scales. This finding suggests that GBA mutation carriers have a physiologic signature that is distinct from that found in sporadic PD.

9.
Front Digit Health ; 3: 618959, 2021.
Article in English | MEDLINE | ID: mdl-34713096

ABSTRACT

Digital health can drive patient-centric innovation in neuromodulation by leveraging current tools to identify response predictors and digital biomarkers. Iterative technological evolution has led us to an ideal point to integrate digital health with neuromodulation. Here, we provide an overview of the digital health building-blocks, the status of advanced neuromodulation technologies, and future applications for neuromodulation with digital health integration.

11.
Front Neurosci ; 15: 660942, 2021.
Article in English | MEDLINE | ID: mdl-34276285

ABSTRACT

The incretin hormone glucagon-like peptide 1 (GLP-1) has neuroprotective effects in animal models of Parkinson's disease (PD), and GLP-1 receptor agonists are associated with clinical improvements in human PD patients. GLP-1 is produced and secreted by intestinal L-cells in response to consumption of a meal. Specifically, intestinal microbiota produce short chain fatty acids (SCFA) which, in turn, promote secretion of GLP-1 into the systemic circulation, from which it can enter the brain. Our group and others have reported that PD patients have an altered intestinal microbial community that produces less SCFA compared to age-matched controls. In this report, we demonstrate that PD patients have diminished GLP-1 secretion in response to a meal compared to their household controls. Peak postprandial GLP-1 levels did not correlate with PD disease severity, motor function, or disease duration. These data provide the scientific rationale for future studies designed to elucidate the role of GLP-1 in the pathogenesis of PD and test the potential utility of GLP-1-directed therapies.

12.
Stereotact Funct Neurosurg ; 99(3): 187-195, 2021.
Article in English | MEDLINE | ID: mdl-33207350

ABSTRACT

INTRODUCTION: The intersection of Bejjani's line with the well-delineated medial subthalamic nucleus (STN) border on MRI has recently been proposed as an individualized reference in subthalamic deep brain stimulation (DBS) surgery for Parkinson's disease (PD). We, therefore, aimed to investigate the applicability across centers of the medial STN border as a patient-specific reference point in STN DBS for PD and explore anatomical variability between left and right mesencephalic area within patients. Furthermore, we aim to evaluate a recently defined theoretic stimulation "hotspot" in a different center. METHODS: Preoperative 3-Tesla T2 and susceptibility-weighted images (SWI) were used to identify the intersection of Bejjani's line with the medial STN border in left and right mesencephalic area. The average stereotactic coordinates of the center of stimulation relative to the medial STN border were compared with the predefined theoretic stimulation "hotspot." RESULTS: Fifty-four patients provided 108 stereotactic coordinates of medial STN borders on both sequences. Significant difference in means was found in the Y-(anteroposterior) and Z-(dorsoventral) directions (T2 vs. SWI; p < 0.001). Mean coordinates in the Y-(anteroposterior) direction differed significantly between left and right mesencephalic area (T2: p < 0.001; SWI: p = 0.021). Sixty-six DBS leads were placed in 36 patients that had finished stimulation programming, and the average stereotactic coordinates of the center of stimulation relative to the medial STN border on T2 sequences were 3.1 mm lateral, 0.7 mm anterior, and 1.8 mm superior, in proximity of the predefined theoretic stimulation "hotspot." CONCLUSION: The medial STN border is applicable across centers as a reference point for STN DBS surgery for PD and seems suitable in order to account for interindividual and intraindividual anatomical variability if one is aware of the discrepancies between T2-weighted imaging and SWI.


Subject(s)
Deep Brain Stimulation , Neurosurgery , Parkinson Disease , Subthalamic Nucleus , Humans , Magnetic Resonance Imaging , Parkinson Disease/diagnostic imaging , Parkinson Disease/surgery , Subthalamic Nucleus/diagnostic imaging , Subthalamic Nucleus/surgery
13.
Lancet Neurol ; 19(6): 491-501, 2020 06.
Article in English | MEDLINE | ID: mdl-32470421

ABSTRACT

BACKGROUND: Deep brain stimulation (DBS) of the subthalamic nucleus is an established therapeutic option for managing motor symptoms of Parkinson's disease. We conducted a double-blind, sham-controlled, randomised controlled trial to assess subthalamic nucleus DBS, with a novel multiple independent contact current-controlled (MICC) device, in patients with Parkinson's disease. METHODS: This trial took place at 23 implanting centres in the USA. Key inclusion criteria were age between 22 and 75 years, a diagnosis of idiopathic Parkinson's disease with over 5 years of motor symptoms, and stable use of anti-parkinsonian medications for 28 days before consent. Patients who passed screening criteria were implanted with the DBS device bilaterally in the subthalamic nucleus. Patients were randomly assigned in a 3:1 ratio to receive either active therapeutic stimulation settings (active group) or subtherapeutic stimulation settings (control group) for the 3-month blinded period. Randomisation took place with a computer-generated data capture system using a pre-generated randomisation table, stratified by site with random permuted blocks. During the 3-month blinded period, both patients and the assessors were masked to the treatment group while the unmasked programmer was responsible for programming and optimisation of device settings. The primary outcome was the difference in mean change from baseline visit to 3 months post-randomisation between the active and control groups in the mean number of waking hours per day with good symptom control and no troublesome dyskinesias, with no increase in anti-parkinsonian medications. Upon completion of the blinded phase, all patients received active treatment in the open-label period for up to 5 years. Primary and secondary outcomes were analysed by intention to treat. All patients who provided informed consent were included in the safety analysis. The open-label phase is ongoing with no new enrolment, and current findings are based on the prespecified interim analysis of the first 160 randomly assigned patients. The study is registered with ClinicalTrials.gov, NCT01839396. FINDINGS: Between May 17, 2013, and Nov 30, 2017, 313 patients were enrolled across 23 sites. Of these 313 patients, 196 (63%) received the DBS implant and 191 (61%) were randomly assigned. Of the 160 patients included in the interim analysis, 121 (76%) were randomly assigned to the active group and 39 (24%) to the control group. The difference in mean change from the baseline visit (post-implant) to 3 months post-randomisation in increased ON time without troublesome dyskinesias between the active and control groups was 3·03 h (SD 4·52, 95% CI 1·3-4·7; p<0·0001). 26 serious adverse events in 20 (13%) patients occurred during the 3-month blinded period. Of these, 18 events were reported in the active group and 8 in the control group. One death was reported among the 196 patients before randomisation, which was unrelated to the procedure, device, or stimulation. INTERPRETATION: This double-blind, sham-controlled, randomised controlled trial provides class I evidence of the safety and clinical efficacy of subthalamic nucleus DBS with a novel MICC device for the treatment of motor symptoms of Parkinson's disease. Future trials are needed to investigate potential benefits of producing a more defined current field using MICC technology, and its effect on clinical outcomes. FUNDING: Boston Scientific.


Subject(s)
Deep Brain Stimulation/methods , Parkinson Disease/therapy , Subthalamic Nucleus/metabolism , Adult , Aged , Double-Blind Method , Dyskinesias/therapy , Female , Humans , Longitudinal Studies , Male , Middle Aged , Severity of Illness Index , Treatment Outcome
14.
World Neurosurg ; 139: e784-e791, 2020 07.
Article in English | MEDLINE | ID: mdl-32371080

ABSTRACT

OBJECTIVE: We sought to determine the location of kinesthetic cell clusters within the subthalamic nucleus (STN) on magnetic resonance imaging, adjusted for interindividual anatomic variability by employing the medial STN border as a reference point. METHODS: We retrospectively localized microelectrode recording-defined kinesthetic cells on 3-Tesla T2-weighted and susceptibility-weighted images in patients who underwent STN deep brain stimulation for Parkinson disease and averaged the stereotactic coordinates. These locations were calculated relative to the nonindividualized midcommissural point (MCP) and, in order to account for interindividual anatomic variability, also calculated relative to the patient-specific intersection of Bejjani line with the medial STN border. Two example patients were selected in order to visualize the discrepancies between the adjusted and nonadjusted theoretic kinesthetic cell clusters on magnetic resonance imaging. RESULTS: Relative to the MCP, average kinesthetic cell coordinates were 12.3 ± 1.2 mm lateral, 1.7 ± 1.4 mm posterior, and 2.3 ± 1.5 mm inferior. Relative to the medial STN border, mean coordinates were 3.4 ± 1.0 mm lateral, 1.0 ± 1.4 mm anterior, and 1.7 ± 1.5 mm superior on T2-sequences, and on susceptibility-weighted images mean coordinates were 3.2 ± 1.1 mm lateral, 0.8 ± 1.5 mm anterior, and 2.1 ± 1.5 mm superior. The theoretic kinesthetic cell clusters may appear outside the sensorimotor STN when using the MCP, whereas these clusters fall well within the sensorimotor STN when employing the medial STN border as a reference point. CONCLUSIONS: By using the medial STN border as a patient-specific anatomic reference point in STN deep brain stimulation for Parkinson disease, we accounted for interindividual anatomic variability and provided accurate insight in the clustering of kinesthetic cells within the dorsolateral STN.


Subject(s)
Brain Mapping/methods , Deep Brain Stimulation/methods , Parkinson Disease/therapy , Subthalamic Nucleus/diagnostic imaging , Subthalamic Nucleus/physiology , Aged , Female , Humans , Magnetic Resonance Imaging , Male , Microelectrodes , Middle Aged , Neurons/cytology , Stereotaxic Techniques , Subthalamic Nucleus/cytology
15.
Neurol Ther ; 9(1): 187-191, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32274660

ABSTRACT

INTRODUCTION: Myoclonus-dystonia is an inherited disorder characterized by a combination of myoclonic jerks and dystonia. Mutations in the epsilon-sarcoglycan gene (SGCE) represent the main known genetic cause. In the last few years, deep brain stimulation (DBS) has shown significant promise in treating these patients. There is only one report in the literature of a patient with positive SGCE mutation and isolated myoclonus phenotype who has been successfully treated with DBS. CASE PRESENTATION: We present a case of a 16-year-old young man with a history of quick jerks since childhood. They progressed gradually over the years involving the entire body and interfering with most of his daily activities. He had no dystonia. Genetic testing identified a single base deletion in exon 3 of the SGCE gene, considered very likely pathogenic. After unsuccessfully trying several oral medications, he underwent DBS of the globus pallidus internus (GPi). His Unified Myoclonus Rating Scale score during rest and with action improved by 92.8% and 82.6%, respectively. DISCUSSION: The striking effect of DBS on myoclonic jerks confirms the superior benefit of DBS over oral medications. Further study is needed to determine the role of mutation status in predicting DBS response, especially considering that myoclonus-dystonia is genetically heterogeneous. CONCLUSION: Our case confirms the poor response to oral medications and supports the use of GPi DBS for patients with genetically confirmed myoclonus-dystonia and isolated-myoclonus phenotype. In addition, our case represents familial myoclonus-dystonia due to a novel SGCE mutation.

17.
Neurol Ther ; 8(2): 483-489, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31243712

ABSTRACT

INTRODUCTION: Deep brain stimulation (DBS) of the subthalamic nucleus (STN) using high-frequency (130-185 Hz) stimulation (HFS) is more effective for appendicular than for axial symptoms. Low-frequency stimulation (LFS) of the STN may reduce gait/balance and speech impairment but can result in worsened appendicular symptoms, limiting its clinical usefulness. A novel dual-frequency paradigm (interleave-interlink, IL-IL) was created in order to reduce gait/balance and speech impairment while maintaining appendicular symptom control in Parkinson's disease (PD) patients chronically stimulated with DBS. METHODS: Two overlapping LFS programs are applied to each DBS lead, with the overlapping area focused around the optimal electrode contact. As a result, this area receives HFS, controlling appendicular symptoms. The non-overlapping area receives LFS, potentially reducing gait/balance and speech impairment. Patients were separated into three categories based on their chief complaint(s): gait/balance impairment, speech impairment, and/or incomplete PD symptom control. The Clinical- Global Impression of Change scale (CGI-C) was completed retrospectively based on patient/caregiver feedback in patients who remained on IL-IL (at 3 months and at the last follow-up). RESULTS: Seventy-six patients were switched from optimized HFS to IL-IL. Fifty-five (72%) patients remained on IL-IL after 22 ± 8.7 months. The median (range) CGI-C for gait was 2 (1-5) at 3 months and 3 (1-4) at last follow-up, for dysarthria it was 4 (1-4) at 3 months and 4 (1-5) at last follow-up, and for PD motor it was 2 (1-3) at 3 months and 2 (1-3) at last follow-up. CONCLUSION: A substantial number of patients remained on IL-IL because of subjective improvements in gait/balance, speech, or PD symptoms. A prospective, double-blind, crossover study with objective/quantitative outcome measures is underway.

18.
J Clin Neurophysiol ; 36(1): 67-73, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30418266

ABSTRACT

PURPOSE: Local field potential recordings from deep brain stimulation (DBS) leads provide insight into the pathophysiology of Parkinson disease (PD). We recorded local field potential activity from DBS leads within the subthalamic nucleus in patients with PD undergoing DBS surgery to identify reproducible pathophysiological signatures of the disease. METHODS: Local field potentials were recorded in 11 hemispheres from patients with PD undergoing subthalamic nucleus-DBS. Bipolar recordings were performed off medication for 2 minutes at rest and another 2 minutes with continuous repetitive opening-closing of the contralateral hand. Spectral analysis and bicoherence were performed and compared between the two testing conditions. RESULTS: In all hemispheres, predominance of the beta band frequency (13-30 Hz) was observed at rest and during movement. Beta peak energy was significantly (P < 0.05) increased during movement compared with rest in 6 of 10 hemispheres. Significant beta bicoherence was observed at rest and during movement in 5 of 10 hemispheres. The most robust local field potential recordings were observed at the DBS contact(s) independently chosen for programming in 9 of the 10 hemispheres. CONCLUSIONS: In patients with PD, beta activity that increases with repetitive movement may be a signature of the "off" medication state. These findings provide new data on beta oscillatory activity during the Parkinsonian "off" state that may help further define the local field potential signatures of PD.


Subject(s)
Beta Rhythm/physiology , Deep Brain Stimulation , Movement/physiology , Parkinson Disease/physiopathology , Parkinson Disease/surgery , Subthalamic Nucleus/physiopathology , Aged , Female , Hand/physiopathology , Humans , Intraoperative Neurophysiological Monitoring , Male , Middle Aged , Signal Processing, Computer-Assisted , Subthalamic Nucleus/surgery
19.
Stereotact Funct Neurosurg ; 96(4): 231-238, 2018.
Article in English | MEDLINE | ID: mdl-30145596

ABSTRACT

BACKGROUND/AIMS: Microelectrode recording (MER)-guided deep brain stimulation (DBS) aims to place the DBS lead in the optimal electrophysiological target. When single-track MER or test stimulation yields suboptimal results, trajectory adjustments are made. The accuracy of these trajectory adjustments is unknown. Intraoperative computed tomography can visualize the microelectrode (ME) and verify ME adjustments. We aimed to determine the accuracy of ME movements in patients undergoing MER-guided DBS. METHODS: Coordinates following three methods of adjustment were compared: (1) those within the default "+" configuration of the ME holder; (2) those involving rotation of the default "+" to the "x" configuration; and (3) those involving head stage adjustments. Radial error and absolute differences between coordinates were determined. RESULTS: 87 ME movements in 59 patients were analyzed. Median (IQR) radial error was 0.59 (0.64) mm. Median (IQR) absolute x and y coordinate errors were 0.29 (0.52) and 0.38 (0.44) mm, respectively. Errors were largest after rotating the multielectrode holder to its "x"-shaped setup. CONCLUSION: ME trajectory adjustments can be made accurately. In a considerable number of cases, errors exceeding 1 mm were found. Adjustments from the "+" setup to the "x" setup are most prone to inaccuracies.


Subject(s)
Brain/diagnostic imaging , Deep Brain Stimulation/methods , Electrodes, Implanted , Microelectrodes , Parkinson Disease/surgery , Adult , Aged , Brain/surgery , Female , Humans , Male , Middle Aged , Parkinson Disease/diagnostic imaging , Tomography, X-Ray Computed
20.
Brain Sci ; 8(4)2018 Apr 16.
Article in English | MEDLINE | ID: mdl-29659494

ABSTRACT

Objective. To evaluate the efficacy of deep brain stimulation of the subthalamic nucleus (STN DBS) in patients with Parkinson disease (PD) who previously underwent lesioning of the basal ganglia. Material and methods. The study included 22 patients who underwent STN DBS. Eleven patients had undergone prior unilateral pallidotomy (n = 6) or VL/VIM thalamotomy (n = 5) while the other 11 patients had not. The primary outcome was the change from baseline in the motor subscore of the Unified Parkinson Disease Rating Scale (UPDRS-III) 12 months after STN DBS. Secondary outcomes included change in motor response complications (UPDRS-IV) and change in levodopa equivalent daily dose (LEDD). Results. In the group with prior lesioning UPDRS-III improved by 45%, from 51.5 ± 9.0% (range, 35–65) to 26.5 ± 8.4 (range, 21–50) (p < 0.01) and UPDRS-IV by 75%, from 8.0 ± 2.01 (range, 5–11) to 2.1 ± 0.74 (range, 1–3) (p < 0.01). In the group without prior lesioning UPDRS-III improved by 61%, from 74.2% ± 7.32 (range, 63–82) to 29.3 ± 5.99 (range, 20–42) (p < 0.01) and UPDRS-IV by 77%, from 9.1 ± 2.46 (range, 5–12) to 2.0 ± 1.1 (range, 1–4) (p < 0.01). Comparing the two groups (with and without lesioning) no significant differences were found either in UPDRS-III (p > 0.05) or UPDRS-IV scores (p > 0.05) at 12 months post-DBS. The LEDD was reduced by 51.4%, from 1008.2 ± 346.4 to 490.0 ± 194.3 in those with prior surgery (p < 0.01) and by 55.0%, from 963.4 ± 96.2 to 433.3 ± 160.2 in those without (p < 0.01).UPDRS-III improved by 51.8%, from 53.7 ± 4.6 (range, 50–62) to 25.0 ± 3.8 (range, 21–31) in those with prior pallidotomy (p < 0.01), and by 37.5%, from 48.8 ± 12.6 (range, 35–65) to 29.8 ± 13.6 (range, 22–50) in those with prior thalamotomy (p < 0.01). This numerical difference in improvement was not statistically significant (p > 0.05). Conclusion. Our comparative study indicates that bilateral STN DBS is effective and can be used in patients with Parkinson disease with prior unilateral stereotactic destructive operations on subcortical structures. The results in our patient cohort are generally consistent with previously published reports of smaller series from multiple centers worldwide.

SELECTION OF CITATIONS
SEARCH DETAIL
...