Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
J Chem Ecol ; 48(11-12): 841-849, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36302913

ABSTRACT

Silicon (Si) fertilization alleviates biotic stresses in plants. Si enhances plant resistance against phytophagous insects through physical and biochemical mechanisms. In particular, Si modifies jasmonic acid levels and the emissions of herbivore-induced plant volatiles (HIPVs). Here, we investigated whether Si accumulation in the tissues of maize leaves modifies the emissions of constitutive and herbivore-induced plant volatiles, with cascade deterrent effects on oviposition site selection by Spodoptera exigua Hübner (Lepidoptera: Noctuidae). Maize plants were cultivated in a hydroponic system under three Si concentrations, resulting in three groups of plants expressing different Si concentrations in their tissues (0.31 ± 0.04, 4.69 ± 0.49, and 9.56 ± 0.30 g Si. Kg- 1 DW). We collected volatiles from undamaged and caterpillar-infested plants, and found that Si concentration in plant tissues had no significant impact. Jasmonic acid content was high in insect-infested plants, but was similar across all Si treatments. Oviposition site selection bioassays using fertilized S. exigua females showed that Si concentration in plant tissues did not affect the number of eggs laid on Si-treated plants. In conclusion, our study shows that the Si content in maize tissues does not impact the semiochemical interactions with S. exigua.


Subject(s)
Silicon , Zea mays , Animals , Female , Spodoptera , Silicon/pharmacology , Oviposition , Herbivory , Larva
2.
Plants (Basel) ; 8(11)2019 Oct 23.
Article in English | MEDLINE | ID: mdl-31652861

ABSTRACT

Environmental factors controlling silicon (Si) accumulation in terrestrial plant are key drivers to alleviate plant biotic stresses, including insect herbivory. While there is a general agreement on the ability of Si-enriched plant to better resist insect feeding, recent studies suggest that Si also primes biochemical defense pathways in various plant families. In this review, we first summarize how soil parameters and climate variables influence Si assimilation in plants. Then, we describe recent evidences on the ability of Si to modulate plant volatile emissions, with potential cascade effects on phytophagous insects and higher trophic levels. Even though the mechanisms still need to be elucidated, Si accumulation in plants leads to contrasting effects on the levels of the three major phytohormones, namely jasmonic acid, salicylic acid and ethylene, resulting in modified emissions of plant volatile organic compounds. Herbivore-induced plant volatiles would be particularly impacted by Si concentration in plant tissues, resulting in a cascade effect on the attraction of natural enemies of pests, known to locate their prey or hosts based on plant volatile cues. Since seven of the top 10 most important crops in the world are Si-accumulating Poaceae species, it is important to discuss the potential of Si mobility in soil-plant systems as a novel component of an integrated pest management.

3.
Insects ; 10(10)2019 Sep 30.
Article in English | MEDLINE | ID: mdl-31575079

ABSTRACT

The multicolored Asian lady beetle, Harmonia axyridis (Coleoptera: Coccinellidae), originates from South-East Asia and is now considered as an invasive species at a worldwide scale, with populations encountered in North and South America, Africa, and Europe. Several previous studies suggested that invasive populations display different behavioral and physiological traits, leading to a better fitness than native individuals. H. axyridis sex pheromone was identified recently, but only from individuals established in Europe. In this study, we compare the composition of the female sex pheromone of H. axyridis from two populations: (i) an invasive population in North America, and (ii) a native population in South-East China. We found the females originating from both populations to release in similar proportions the same five pheromonal compounds, namely ß-caryophyllene, ß-elemene, methyl-eugenol, α-humulene, and α-bulnesene. However, females from the North American strain release all five compounds in larger amount than the Chinese ones. Whether invasive individuals were selected during the process of invasion through their capacity to better call and find sexual partners remains to be confirmed.

4.
Sci Rep ; 9(1): 8744, 2019 06 19.
Article in English | MEDLINE | ID: mdl-31217431

ABSTRACT

Polyphenism, a common phenomenon in nature, is an important form of adaptation in a diverse environment. Corn leaf aphid (CLA), Rhopalosiphum maidis, (Hemiptera: Aphididae), exhibit wing polyphenism in response to poor habitat quality. In this study, we focused on the effects of crowding and thermal cues on morph determination of CLA. Five developmental stages of aphids (1st to 4th nymphs and maternal adults) with increased population densities, were tested under two kinds of temperature patterns, i.e., A) a constant temperature of 22 °C with 2 h exposure to high temperature in the range of 35 to 39 °C during mid-photophase and B) different constant temperatures in the range of 22-30 °C with 2 h exposure to high temperature of 39 °C during mid-photophase. Crowding was found to directly impact winged induction. The 1st and 2nd nymphs were more sensitive for alate morphs induction under high density. In addition, temperature played a significant role in wing production, with the temperature setting of 26/39 °C in pattern B inducing higher alate morphs and survival than other temperature settings. Therefore, we hypothesize that warmer climate with brief high temperature is more favourable for survival and alate morphs production, but cool weather and transient extreme high temperature (>39 °C) is detrimental for CLA. Our results provide a new perspective on understanding the interactions between changes in extreme high temperatures and insect densities that differentially affect wing polymorphism for further demographic and distribution rates of species across temporal and spatial scales.


Subject(s)
Acclimatization/physiology , Aphids/physiology , Hot Temperature , Life Cycle Stages/physiology , Wings, Animal/physiology , Animals
5.
J Econ Entomol ; 111(5): 2032-2037, 2018 09 26.
Article in English | MEDLINE | ID: mdl-30256998

ABSTRACT

It is important to monitor fruit flies (Diptera: Tephritidae) efficiently to implement sustainable means of control. Attractants are often used to increase the efficiency of sticky traps deployed in orchards to monitor Lepidopterans, but remains to be developed to monitor fruit flies. Rhagoletis completa Cresson (Diptera: Tephritidae) is an invasive species in the walnut orchards of Europe, and is commonly monitored with yellow sticky traps. In this study, we collected the volatile compounds released by male and female R. completa, and identified two lactones released exclusively by males. We then formulated both lactones in long-lasting volatile dispensers, and we quantified their release rate over a 26-d period. Finally, during the entire period when female flies are present in the field, we compared the efficiency of the conventional monitoring method using unbaited yellow sticky traps with yellow sticky traps associated with a dispenser releasing both male-produced lactones. These assays were conducted in 54 walnut orchards in France, in 2017. The number of fruit flies caught with sticky traps associated with lactones dispensers was increased by up to 10 times each week. Lactone-baited traps also allowed earlier detection in the season. These field results are promising for R. completa monitoring. A complete chiral identification of these lactones should be performed along with a clarification of their role in the sexual communication of R. completa.


Subject(s)
Insect Control/methods , Lactones/analysis , Tephritidae/chemistry , Volatile Organic Compounds/analysis , Animals , Female , Juglans , Male
6.
Pest Manag Sci ; 73(10): 2100-2104, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28374545

ABSTRACT

BACKGROUND: Several European countries are important walnut (Juglans regia L.) producers. However, these countries must contend with the recent introduction of the Walnut Husk Fly, Rhagoletis completa Cresson (Diptera, Tephritidae), which is causing severe economic losses, especially in organic production. Because most Tephritid fruit flies use kairomones in their search for host plants, we hypothesise that this highly specialist species orients toward the volatile blend released by walnut husks. RESULTS: We collected, identified, and quantified the volatile organic chemicals (VOCs) released by walnut husks from the most commonly cultivated variety in France (Franquette). Then, the behavioural response of R. completa toward synthetic odour blends was recorded in dual choice assays conducted in net cages. A total of 26 VOCs were identified, with α-pinene, ß-pinene, trans-linalool, eugenol, and tetradecane representing the major constituents. In the dual choice assay, male and female R. completa were strongly attracted to synthetic blend that included most of the identified husk VOCs. CONCLUSION: When searching for a host plant, R. completa use host fruit kairomones. The potential of these semiochemicals in monitoring and management of this quarantine pest is discussed. © 2017 Society of Chemical Industry.


Subject(s)
Chemotaxis , Juglans/chemistry , Pheromones/pharmacology , Tephritidae/drug effects , Volatile Organic Compounds/pharmacology , Animals , Female , France , Male , Seeds/chemistry , Tephritidae/physiology
7.
Micron ; 96: 16-28, 2017 May.
Article in English | MEDLINE | ID: mdl-28214751

ABSTRACT

The tomato leafminer, Tuta absoluta (Lepidoptera: Gelechiidae), is a widespread devastating pest that develops on tomato and other economically important solanaceous crops. Current semiochemically-based management strategies still fail to significantly reduce damages and need to be improved. Here we describe under scanning and transmission electron microscopy the structure and distribution of the sensilla that are displayed on adult antennae. These were similar in size between males (3424.4±135.3µm) and females (3292.1±111.5µm), being segmented into a scape, a pedicel, and a distal filiform flagellum. Eight morphological sensilla types were observed on both sexes: Böhm's bristles, sensilla squamiformia, sensilla trichodea, sensilla basiconica (two subtypes), sensilla chaetica, sensilla coeloconica, sensilla auricillica, and sensilla styloconica. The main sexual dimorphism was related to the higher abundance of sensilla trichodea in males, twice as abundant as in females. The putative functional significance of the different sensilla types regarding the insect ecology is discussed based on the available literature. This work provides descriptions of the antennae and related sensory structures. We expect these results to help develop further electrophysiological investigations aiming to a better understanding of T. absoluta olfaction.


Subject(s)
Lepidoptera/anatomy & histology , Sensilla/ultrastructure , Smell/physiology , Animals , Female , Solanum lycopersicum , Male , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Sensilla/physiology , Sex Characteristics
8.
J Chem Ecol ; 43(2): 164-171, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28097605

ABSTRACT

Insects often rely on olfaction to communicate with conspecifics. While the chemical language of insects has been deciphered in recent decades, few studies have assessed how changes in atmospheric greenhouse gas concentrations might impact pheromonal communication in insects. Here, we hypothesize that changes in the concentration of atmospheric carbon dioxide affect the whole dynamics of alarm signaling in aphids, including: (1) the production of the active compound (E)-ß-farnesene (Eßf), (2) emission behavior when under attack, (3) perception by the olfactory apparatus, and (4) the escape response. We reared two strains of the pea aphid, Acyrthosiphon pisum, under ambient and elevated CO2 concentrations over several generations. We found that an increase in CO2 concentration reduced the production (i.e., individual content) and emission (released under predation events) of Eßf. While no difference in Eßf neuronal perception was observed, we found that an increase in CO2 strongly reduced the escape behavior expressed by an aphid colony following exposure to natural doses of alarm pheromone. In conclusion, our results confirm that changes to greenhouse gases impact chemical communication in the pea aphid, and could potentially have a cascade effect on interactions with higher trophic levels.


Subject(s)
Air Pollutants/analysis , Animal Communication , Aphids/physiology , Carbon Dioxide/analysis , Escape Reaction/drug effects , Pheromones/metabolism , Sesquiterpenes/metabolism , Air Pollutants/toxicity , Animals , Carbon Dioxide/toxicity , Coleoptera/physiology , Dose-Response Relationship, Drug , Escape Reaction/physiology , Pheromones/analysis , Predatory Behavior , Sesquiterpenes/analysis
9.
Insect Sci ; 24(2): 278-284, 2017 Apr.
Article in English | MEDLINE | ID: mdl-26639575

ABSTRACT

Mutualistic interactions between ant and aphid species have been the subject of considerable historical and contemporary investigations, the primary benefits being cleaning and protection for the aphids and carbohydrate-rich honeydew for the ants. Questions remained, however, as to the volatile semiochemical factor influencing this relationship. A recent study highlighted the role of bacterial honeydew volatile compounds in ant attraction. Here, ant's ability to distantly discriminate 2 aphid species was investigated based on bacterial honeydew semiochemicals emissions using a two-way olfactometer. Both the mutualistic aphid Aphis fabae L. and the nonmyrmecophilous aphid Acyrthosiphon pisum Harris were found to be attractive for the ant Lasius niger L. The level of attraction was similar in both assays (control vs. one of the aphid species). However, when given a choice between these 2 aphid species, ants showed a significant preference for Aphis fabae. Honeydew volatiles, mostly from bacterial origins, are known to be a key element in ant attraction. Using the same olfactometry protocol, the relative attractiveness of volatiles emitted by honeydews collected from each aphid species and by bacteria isolated from each honeydew was investigated. Again, ants significantly preferred volatiles released by Aphis fabae honeydew and bacteria. This information suggests that microbial honeydew volatiles enable ants to distantly discriminate aphid species. These results strengthen the interest of studying the occurrence and potential impact of microorganisms in insect symbioses.


Subject(s)
Ants/physiology , Aphids/physiology , Smell , Symbiosis , Animals , Aphids/microbiology , Bacteria/chemistry , Choice Behavior , Pheromones/analysis , Species Specificity , Volatile Organic Compounds/analysis
10.
Curr Opin Insect Sci ; 17: 87-91, 2016 10.
Article in English | MEDLINE | ID: mdl-27720079

ABSTRACT

Understanding how climate change will affect species interactions is a challenge for all branches of ecology. We have only limited understanding of how increasing temperature and atmospheric CO2 and O3 levels will affect pheromone-mediated communication among insects. Based on the existing literature, we suggest that the entire process of pheromonal communication, from production to behavioural response, is likely to be impacted by increases in temperature and modifications to atmospheric CO2 and O3 levels. We argue that insect species relying on long-range chemical signals will be most impacted, because these signals will likely suffer from longer exposure to oxidative gases during dispersal. We provide future directions for research programmes investigating the consequences of climate change on insect pheromonal communication.


Subject(s)
Climate Change , Insecta/physiology , Pheromones/physiology , Animal Communication , Animals , Ecosystem
11.
Insects ; 6(2): 514-23, 2015 Jun 08.
Article in English | MEDLINE | ID: mdl-26463201

ABSTRACT

Integrated Pest Management strategies are widely implemented in sweet peppers. Aphid biological control on sweet pepers includes curative applications of parasitoids and generalist predators, but with limited efficiency. Macrolophus pygmaeus is a zoophytophagous predator which has been reported to predate on aphids, but has traditionally been used to control other pests, including whiteflies. In this work, we evaluate the effectiveness of M. pygmaeus in controlling Myzus persicae (Homoptera: Aphididae) by testing different combinations of aphid and predator densities in cage-experiments under greenhouse conditions. The impact of the presence of an alternative factitious prey (E. kuehniella eggs) was also investigated. Macrolophus pygmaeus, at densities of four individuals/plant, caused rapid decline of newly established aphid populations. When aphid infestations were heavy, the mirid bug reduced the aphid numbers but did not fully eradicate aphid populations. The availability of a factitious prey did not influence M. pygmaeus predation on aphids. Based on our data, preventive application of M. pygmaeus, along with a supplementary food source , is recommended to control early infestations of aphids.

12.
Environ Entomol ; 44(2): 277-86, 2015 Apr.
Article in English | MEDLINE | ID: mdl-26313181

ABSTRACT

Insects are highly dependent on odor cues released into the environment to locate conspecifics or food sources. This mechanism is particularly important for insect predators that rely on kairomones released by their prey to detect them. In the context of climate change and, more specifically, modifications in the gas composition of the atmosphere, chemical communication-mediating interactions between phytophagous insect pests, their host plants, and their natural enemies is likely to be impacted. Several reports have indicated that modifications to plants caused by elevated carbon dioxide and ozone concentrations might indirectly affect insect herbivores, with community-level modifications to this group potentially having an indirect influence on higher trophic levels. The vulnerability of agricultural insect pests toward their natural enemies under elevated greenhouse gases concentrations has been frequently reported, but conflicting results have been obtained. This literature review shows that the higher levels of carbon dioxide, as predicted for the coming century, do not enhance the abundance or efficiency of natural enemies to locate hosts or prey in most published studies. Increased ozone levels lead to modifications in herbivore-induced volatile organic compounds (VOCs) released by damaged plants, which may impact the attractiveness of these herbivores to the third trophic level. Furthermore, other oxidative gases (such as SO2 and NO2) tend to reduce the abundance of natural enemies. The impact of changes in atmospheric gas emissions on plant-insect and insect-insect chemical communication has been under-documented, despite the significance of these mechanisms in tritrophic interactions. We conclude by suggesting some further prospects on this topic of research yet to be investigated.


Subject(s)
Climate Change , Food Chain , Greenhouse Effect , Herbivory , Insecta , Air Pollutants/adverse effects , Animals , Gases/adverse effects , Insecta/microbiology , Insecta/parasitology , Insecta/physiology , Insecta/virology
13.
Vet Parasitol ; 211(3-4): 274-82, 2015 Jul 30.
Article in English | MEDLINE | ID: mdl-26021527

ABSTRACT

Some Culicoides biting midge species (Diptera: Ceratopogonidae) are biological virus vectors worldwide and have recently been associated with outbreaks of important epizootic diseases such as bluetongue and Schmallenberg in northern Europe. These diseases, which affect domestic and wild ruminants, have caused considerable economic losses. Knowledge of host preferences of these biting midges - especially of the relevant vectors of arboviruses near farms, such as Culicoides obsoletus in northern Europe - is essential to understand pathogen transmission cycles and the epidemiology of associated diseases. This study aimed to determine host preferences of C. obsoletus using an in-field flight tunnel containing pairs of calf, sheep, chicken, and human hosts (and controls) and a laboratory two-choice bioassay containing volatile extracts of host skin (and controls). Behavioural responses of nulliparous C. obsoletus females in the in-field flight tunnel showed a preference for human (but also calf and sheep) hosts, probably due to their exhalation of greater quantities of carbon dioxide. The laboratory experiment revealed that volatile organic compounds released from the skin of chicken and sheep seemed to attract this species. Culicoides obsoletus, thus, seems to have a wide host range and to be particularly attracted by humans under field conditions. A better understanding of vector-host interaction could enable the development of control strategies against adult biting midges, by exploiting insect-repelling or -attractive semiochemicals. Volatile extracts of chicken and/or sheep skin could be used to identify volatile compounds attractive to C. obsoletus, which in turn could be used in baited traps.


Subject(s)
Behavior, Animal/physiology , Cattle , Ceratopogonidae/physiology , Chickens , Odorants , Sheep , Animals , Europe , Female , Humans , Male
14.
Insect Sci ; 22(2): 283-8, 2015 Apr.
Article in English | MEDLINE | ID: mdl-24659520

ABSTRACT

The aphid-ant mutualistic relationships are not necessarily obligate for neither partners but evidence is that such interactions provide them strong advantages in terms of global fitness. While it is largely assumed that ants actively search for their mutualistic partners namely using volatile cues; whether winged aphids (i.e., aphids' most mobile form) are able to select ant-frequented areas had not been investigated so far. Ant-frequented sites would indeed offer several advantages for these aphids including a lower predation pressure through ant presence and enhanced chances of establishing mutuaslistic interactions with neighbor ant colonies. In the field, aphid colonies are often observed in higher densities around ant nests, which is probably linked to a better survival ensured by ants' services. Nevertheless, this could also result from a preferential establishment of winged aphids in ant-frequented areas. We tested this last hypothesis through different ethological assays and show that the facultative myrmecophilous black bean aphid, Aphis fabae L., does not orientate its search for a host plant preferentially toward ant-frequented plants. However, our results suggest that ants reduce the number of winged aphids leaving the newly colonized plant. Thus, ants involved in facultative myrmecophilous interactions with aphids appear to contribute to structure aphid populations in the field by ensuring a better establishment and survival of newly established colonies rather than by inducing a deliberate plant selection by aphid partners based on the proximity of ant colonies.


Subject(s)
Ants/physiology , Aphids/physiology , Animal Distribution , Animals , Appetitive Behavior , Odorants , Symbiosis , Vicia faba
15.
Insect Sci ; 22(5): 670-8, 2015 Oct.
Article in English | MEDLINE | ID: mdl-24889907

ABSTRACT

The invasive multicolored Asian ladybeetle, Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae), aggregates inside dwellings during winter to avoid cold weather. This adaptive behavior disturbs homeowners, because of the large numbers of individuals that aggregate, which induces allergic reactions. The migratory flight patterns of this species have been well documented, with individuals preferentially moving toward prominent and high color contrast elements. However, the factors involved in the selection of aggregation sites by this species have yet to be elucidated. Here, we evaluated the influence of (i) the density of individuals and (ii) the type of available shelters on decisions by H. axyridis to settle and aggregate under shelters. A dual choice bioassay conducted in the laboratory demonstrated the presence of mutual attraction to conspecifics. We also found that individuals preferentially settled under red covered shelters compared to transparent shelters, and that the type of shelter outweighed the effect of social interactions among conspecifics. Moreover, this experiment was performed under non-wintering conditions, providing the first evidence that aggregative behavior in this species can also occur under those specific conditions.


Subject(s)
Coleoptera/physiology , Animals , Behavior, Animal , Choice Behavior , Color , Introduced Species , Seasons , Social Behavior
16.
PLoS One ; 9(12): e115011, 2014.
Article in English | MEDLINE | ID: mdl-25514321

ABSTRACT

To date, volatile sex pheromones have not been identified in the Coccinellidae family; yet, various studies have suggested that such semiochemicals exist. Here, we collected volatile chemicals released by virgin females of the multicolored Asian lady beetle, Harmonia axyridis (Pallas), which were either allowed or not allowed to feed on aphids. Virgin females in the presence of aphids, exhibited "calling behavior", which is commonly associated with the emission of a sex pheromone in several Coleoptera species. These calling females were found to release a blend of volatile compounds that is involved in the remote attraction (i.e., from a distance) of males. Gas Chromatography-Mass Spectrometry (GC-MS) analyses revealed that (-)-ß-caryophyllene was the major constituent of the volatile blend (ranging from 80 to 86%), with four other chemical components also being present; ß-elemene, methyl-eugenol, α-humulene, and α-bulnesene. In a second set of experiments, the emission of the five constituents identified from the blend was quantified daily over a 9-day period after exposure to aphids. We found that the quantity of all five chemicals significantly increased across the experimental period. Finally, we evaluated the activity of a synthetic blend of these chemicals by performing bioassays which demonstrated the same attractive effect in males only. The results confirm that female H. axyridis produce a volatile sex pheromone. These findings have potential in the development of more specific and efficient biological pest-control management methods aimed at manipulating the behavior of this invasive lady beetle.


Subject(s)
Sex Attractants/metabolism , Sexual Behavior, Animal/physiology , Animals , Aphids , Coleoptera , Eating , Eugenol/analogs & derivatives , Eugenol/metabolism , Gas Chromatography-Mass Spectrometry , Monocyclic Sesquiterpenes , Polycyclic Sesquiterpenes , Sesquiterpenes/metabolism , Sesquiterpenes, Guaiane
17.
J Insect Sci ; 142014.
Article in English | MEDLINE | ID: mdl-25528746

ABSTRACT

Jatropha curcas has been introduced into Niger since 2004 by International Crops Research Institute for the Semi-Arid Tropics (ICRISAT). This plant is cultivated for its oil, which can be used as a Biofuel. Through direct and indirect insect collection methods, an inventory of the insect associated with J. curcas has been conducted in Western Niger during two rainy seasons (from June to October) in 2010 and 2011. We have identified insects belonging to the following families: Acrididae (Oedaleus senegalensis Krauss, Oedaleus nigeriensis Uvarov, Heteracris leani Uvarov, Catantops stramineus Walker, Parga cyanoptera Uvarov, and Acanthacris ruficornis citrina Audinet-Serville), Pyrgomorphidae (Poekilocerus bufonius hieroglyphicus Klug), Cetoniidae (Pachnoda interrupta Olivier, Pachnoda marginata aurantia Herbst, Pachnoda sinuata Heinrich and McClain, and Rhabdotis sobrina Gory and Percheron), Meloidae (Decapotoma lunata Pallas), Pentatomidae (Agonoscelis versicoloratus Dallas, Nezara viridula Linn, and Antestia sp. Kirkaldy), Coreidae (Leptoglossus membranaceus Fabricius and Cletus trigonus Thunberg), and Scutelleridae (Calidea panaethiopica Kirkaldy). Origin and potential impact on J. curcas of all these insect species are presented and discussed. The lower insect's diversity indexes are observed in 2010 and 2011 for Niamey, Saga, and Gaya because of semi-arid character of the Sahelian area.


Subject(s)
Crops, Agricultural , Insecta/physiology , Jatropha/parasitology , Animals , Biodiversity , Biofuels , Niger
18.
J Insect Sci ; 14: 58, 2014 May 01.
Article in English | MEDLINE | ID: mdl-25373205

ABSTRACT

The foraging behaviour of a parasitoid insect species includes the host's habitat and subsequent location of the host. Habitats substrate, substrate moisture, and light levels can affect the host searching of different species of parasitoids. However, the depth at which parasitoids concentrate their search effort is another important ecological characteristic and plays an important role in locating a host. Here, we investigated the ability of a pupal parasitoid, Nasonia vitripennis Walker (Hymenoptera: Pteromalidae), to penetrate and kill fly pupae located at different depths of the substrate. Three different types of substrate were tested: loam soil, compost, and vermiculite substrate. In both loam soil and compost, all of the parasitism activity was restricted to pupae placed directly on the surface. Parasitism activity in vermiculite showed that the average number of pupae parasitized decreased with depth of substrate. These results suggest that fly pupae situated deeper in the substrate are less subjected to parasitism by N. vitripennis.


Subject(s)
Diptera/parasitology , Wasps/physiology , Animals , Female , Host-Parasite Interactions , Male , Pupa/parasitology
19.
Insects ; 5(4): 877-84, 2014 Nov 11.
Article in English | MEDLINE | ID: mdl-26462946

ABSTRACT

The tomato leafminer, Tuta absoluta (Lepidoptera: Gelechiidae), is a devastating pest that develops principally on solanaceous plants throughout South and Central America and Europe. In this study, we tested the influence of three levels of T. absoluta infestations on the attraction and oviposition preference of adult T. absoluta. Three infestation levels (i.e., non-infested plants, plants infested with 10 T. absoluta larvae, and plants infested with 20 T. absoluta larvae) were presented by pairs in a flying tunnel to groups of T. absoluta adults. We found no differences in terms of adult attraction for either level of infestations. However, female oviposition choice is influenced by larvae density on tomato plants. We discuss the underlying mechanisms and propose recommendations for further research.

20.
J Forensic Sci ; 59(2): 413-6, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24313637

ABSTRACT

Traditional methods of volatile detection used by police typically consist of reliance on canine olfaction. However, dogs have some limitations such as cost of training and time of conditioning. The possibility of using parasitic wasps for detecting explosives and narcotics has been developed. Moreover, wasps are cheap to produce and can be conditioned with impressive speed for a specific chemical detection task. We examined the ability of Nasonia vitripennis Walker to learn and respond to methyldisulfanylmethane (DMDS), a volatile discriminator of cadaver. The training aimed to form an association between an unconditioned stimulus (pupae) and the conditioned stimulus (odor source). After the training, the time spent by conditioned wasps in the DMDS chamber was measured. Statistical analysis showed that the increasing concentrations involved an increase in the time spent in the chamber containing DMDS. This study indicates that N. vitripennis can respond to DMDS, which provide further support for its development as a biological sensor.


Subject(s)
Conditioning, Classical , Odorants , Volatile Organic Compounds/analysis , Wasps/physiology , Animals , Female , Forensic Sciences
SELECTION OF CITATIONS
SEARCH DETAIL
...