Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Evol ; 14(6): e11331, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38832139

ABSTRACT

Our aim was to describe shifts in autumn and winter harvest distributions of three species of dabbling ducks (blue-winged teal [Spatula discors], mallard [Anas platyrhynchos], and northern pintail [Anas acuta]) in the Central and Mississippi flyways of North America during 1960-2019. We measured shifts in band recovery distributions corrected for changes in hunting season dates and zones by using kernel density estimators to calculate 10 distributional metrics. We then assessed interannual and intraspecific variation by comparing species-specific changes in distributional metrics for 4 months (October-January) and three geographically based subpopulations. During 1960-2019, band recovery distributions shifted west- and southwards (blue-winged teal) or east- and northwards (mallard and northern pintail) by one hundred to several hundred kilometers. For all three species, the broad (95% isopleth) and core distributions (50% isopleth) showed widespread decreases in overlap and increases in relative area compared to a 1960-1979 baseline period. Shifts in band recovery distributions varied by month, with southward shifts for blue-winged teal most pronounced in October and northward shifts for mallard and northern pintail greatest during December and January. Finally, distributional metric response varied considerably among mallard subpopulations, including 2-4-fold differences in longitude, latitude, and overlap, whereas differences among subpopulations were minimal for blue-winged teal and northern pintail. Our findings support the popular notion that winter (December-January) distributions of duck species have shifted north; however, the extent and direction of distributional changes vary among species and subpopulations. Long-term distributional changes are therefore complex and summarizing shifts across species, months, or subpopulations could mask underlying finer-scale patterns that are important to habitat conservation and population management. A detailed understanding of how species distributions have changed over time will help quantify important drivers of species occurrence, identify habitat management options, and could inform decisions on where to focus conservation or restoration efforts.

2.
Ecol Evol ; 13(9): e10509, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37693934

ABSTRACT

Incubation breaks are necessary for any nesting bird but can increase the mortality risk of the nest or attending parent. How intrinsic and extrinsic variables affect nest attentiveness-the proportion of time a female is on nest during incubation- and subsequent survival of the nest remains unclear for uniparental species. We related female nest attentiveness to nest survival and tested the effects of intrinsic and extrinsic variables on nest attentiveness by female Lesser Prairie-chickens (Tympanuchus pallidicinctus) using GPS locations of 87 females at 109 nest sites in 3 study areas in Kansas during 2013-2015. Daily nest survival increased by 39% when nest attentiveness increased from 21% to 98%. Female Lesser Prairie-chickens were 18% less attentive as body mass increased from 600 to 920 g. Daily precipitation and temperature, controlled for days into the incubation period, had interactive effects on nest attentiveness with nest attentiveness lowest on cool, wet days and increasing as temperature increased, regardless of precipitation (41% attentiveness at 16°C and 79 mm of precipitation to 90% attentiveness at 37°C and 41 mm of precipitation). Nest attentiveness increased by 11% as the quantity of grass at the nest site increased from 5% to 78% when visual obstruction was at 1 and 2 decimeters (dm) and increased 9% as the quantity of grass at the nest site increased from 5% to 83% when visual obstruction was at its maximum (3 dm). Our findings reveal the critical importance of nest attentiveness and incubation behavior, not only in relation to demography, but within the context of changing environmental conditions. As warmer temperatures and extreme precipitation events become more common and change the growth rates of vegetation, species like the Lesser Prairie-chicken that are ground-nesting, rely on vegetation cover, and exhibit uniparental care could experience negative demographic consequences.

3.
Appl Environ Microbiol ; 80(6): 1838-47, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24413599

ABSTRACT

Using 16S rRNA gene sequencing analysis, we examined the bacterial diversity and the presence of opportunistic bacterial pathogens (i.e., Campylobacter and Helicobacter) in red knot (Calidris canutus; n = 40), ruddy turnstone (Arenaria interpres; n = 35), and semipalmated sandpiper (Calidris pusilla; n = 22) fecal samples collected during a migratory stopover in Delaware Bay. Additionally, we studied the occurrence of Campylobacter spp., enterococci, and waterfowl fecal source markers using quantitative PCR (qPCR) assays. Of 3,889 16S rRNA clone sequences analyzed, the bacterial community was mostly composed of Bacilli (63.5%), Fusobacteria (12.7%), Epsilonproteobacteria (6.5%), and Clostridia (5.8%). When epsilonproteobacterium-specific 23S rRNA gene clone libraries (i.e., 1,414 sequences) were analyzed, the sequences were identified as Campylobacter (82.3%) or Helicobacter (17.7%) spp. Specifically, 38.4%, 10.1%, and 26.0% of clone sequences were identified as C. lari (>99% sequence identity) in ruddy turnstone, red knot, and semipalmated sandpiper clone libraries, respectively. Other pathogenic species of Campylobacter, such as C. jejuni and C. coli, were not detected in excreta of any of the three bird species. Most Helicobacter-like sequences identified were closely related to H. pametensis (>99% sequence identity) and H. anseris (92% sequence identity). qPCR results showed that the occurrence and abundance of Campylobacter spp. was relatively high compared to those of fecal indicator bacteria, such as Enterococcus spp., E. faecalis, and Catellicoccus marimammalium. Overall, the results provide insights into the complexity of the shorebird gut microbial community and suggest that these migratory birds are important reservoirs of pathogenic Campylobacter species.


Subject(s)
Biota , Campylobacter/isolation & purification , Charadriiformes/microbiology , Gastrointestinal Tract/microbiology , Helicobacter/isolation & purification , Animals , Campylobacter/classification , Campylobacter/genetics , Cluster Analysis , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Delaware , Feces/microbiology , Helicobacter/classification , Helicobacter/genetics , Molecular Sequence Data , Phylogeny , Prevalence , RNA, Ribosomal, 16S/genetics , Real-Time Polymerase Chain Reaction , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...