Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Nucleic Acids Res ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38813827

ABSTRACT

Advances in molecular profiling have facilitated generation of large multi-modal datasets that can potentially reveal critical axes of biological variation underlying complex diseases. Distilling biological meaning, however, requires computational strategies that can perform mosaic integration across diverse cohorts and datatypes. Here, we present mosaicMPI, a framework for discovery of low to high-resolution molecular programs representing both cell types and states, and integration within and across datasets into a network representing biological themes. Using existing datasets in glioblastoma, we demonstrate that this approach robustly integrates single cell and bulk programs across multiple platforms. Clinical and molecular annotations from cohorts are statistically propagated onto this network of programs, yielding a richly characterized landscape of biological themes. This enables deep understanding of individual tumor samples, systematic exploration of relationships between modalities, and generation of a reference map onto which new datasets can rapidly be mapped. mosaicMPI is available at https://github.com/MorrissyLab/mosaicMPI.

2.
J Proteome Res ; 22(9): 3054-3067, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37595185

ABSTRACT

Multiple methods for quantitative proteomics are available for proteome profiling. It is unclear which methods are most useful in situations involving deep proteome profiling and the detection of subtle distortions in the proteome. Here, we compared the performance of seven different strategies in the analysis of a mouse model of Fragile X Syndrome, involving the knockout of the fmr1 gene that is the leading cause of autism spectrum disorder. Focusing on the cerebellum, we show that data-independent acquisition (DIA) and the tandem mass tag (TMT)-based real-time search method (RTS) generated the most informative profiles, generating 334 and 329 significantly altered proteins, respectively, although the latter still suffered from ratio compression. Label-free methods such as BoxCar and a conventional data-dependent acquisition were too noisy to generate a reliable profile, while TMT methods that do not invoke RTS showed a suppressed dynamic range. The TMT method using the TMTpro reagents together with complementary ion quantification (ProC) overcomes ratio compression, but current limitations in ion detection reduce sensitivity. Overall, both DIA and RTS uncovered known regulators of the syndrome and detected alterations in calcium signaling pathways that are consistent with calcium deregulation recently observed in imaging studies. Data are available via ProteomeXchange with the identifier PXD039885.

3.
Front Microbiol ; 13: 888494, 2022.
Article in English | MEDLINE | ID: mdl-35663861

ABSTRACT

The Lyme disease spirochete Borrelia burgdorferi, encodes an elaborate antigenic variation system that promotes the ongoing variation of a major surface lipoprotein, VlsE. Changes in VlsE are continual and always one step ahead of the host acquired immune system, which requires 1-2 weeks to generate specific antibodies. By the time this happens, new VlsE variants have arisen that escape immunosurveillance, providing an avenue for persistent infection. This antigenic variation system is driven by segmental gene conversion events that transfer information from a series of silent cassettes (vls2-16) to the expression locus, vlsE. The molecular details of this process remain elusive. Recombinational switching at vlsE is RecA-independent and the only required factor identified to date is the RuvAB branch migrase. In this work we have used next generation long-read sequencing to analyze the effect of several DNA replication/recombination/repair gene disruptions on the frequency of gene conversions at vlsE and report a requirement for the mismatch repair protein MutL. Site directed mutagenesis of mutL suggests that the putative MutL endonuclease activity is required for recombinational switching at vlsE. This is the first report of an unexpected essential role for MutL in a bacterial recombination system and expands the known function of this protein as well as our knowledge of the details of the novel recombinational switching mechanism for vlsE variation.

4.
J Biol Chem ; 295(2): 301-313, 2020 01 10.
Article in English | MEDLINE | ID: mdl-31753921

ABSTRACT

Lyme disease, also known as Lyme borreliosis, is the most common tick-transmitted disease in the Northern Hemisphere. The disease is caused by the bacterial spirochete Borrelia burgdorferi and other related Borrelia species. One of the many fascinating features of this unique pathogen is an elaborate system for antigenic variation, whereby the sequence of the surface-bound lipoprotein VlsE is continually modified through segmental gene conversion events. This perpetual changing of the guard allows the pathogen to remain one step ahead of the acquired immune response, enabling persistent infection. Accordingly, the vls locus is the most evolutionarily diverse genetic element in Lyme disease-causing borreliae. Small stretches of information are transferred from a series of silent cassettes in the vls locus to generate an expressed mosaic vlsE gene version that contains genetic information from several different silent cassettes, resulting in ∼1040 possible vlsE sequences. Yet, despite its extreme evolutionary flexibility, the locus has rigidly conserved structural features. These include a telomeric location of the vlsE gene, an inverse orientation of vlsE and the silent cassettes, the presence of nearly perfect inverted repeats of ∼100 bp near the 5' end of vlsE, and an exceedingly high concentration of G runs in vlsE and the silent cassettes. We discuss the possible roles of these evolutionarily conserved features, highlight recent findings from several studies that have used next-generation DNA sequencing to unravel the switching process, and review advances in the development of a mini-vls system for genetic manipulation of the locus.


Subject(s)
Antigenic Variation , Antigens, Bacterial/immunology , Bacterial Proteins/immunology , Borrelia burgdorferi/immunology , Lipoproteins/immunology , Lyme Disease/immunology , Animals , Antigens, Bacterial/chemistry , Antigens, Bacterial/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Borrelia burgdorferi/chemistry , Borrelia burgdorferi/genetics , Borrelia burgdorferi/physiology , Genetic Loci , Host-Pathogen Interactions , Humans , Immunity , Lipoproteins/chemistry , Lipoproteins/genetics , Models, Molecular , Mutation
5.
Mol Microbiol ; 111(3): 750-763, 2019 03.
Article in English | MEDLINE | ID: mdl-30580501

ABSTRACT

Borrelia burgdorferi is a causative agent of Lyme disease and establishes long-term infection in mammalian hosts. Persistence is promoted by the VlsE antigenic variation system, which generates combinatorial diversity of VlsE through unidirectional, segmental gene conversion from an array of silent cassettes. Here we explore the variants generated by the vls system of strain JD1, which has divergent sequence and structural elements from the type strain B31, the only B. burgdorferi strain in which recombinational switching at vlsE has been studied in detail. We first completed the sequencing of the vls region in JD1, uncovering a previously unreported 114 bp inverted repeat sequence upstream of vlsE. A five-week infection of WT and SCID mice was used for PacBio long read sequencing along with our recently developed VAST pipeline to analyze recombinational switching at vlsE from 40,000 sequences comprising 226,000 inferred recombination events. We show that antigenic variation in B31 and JD1 is highly similar, despite the lack of 17 bp direct repeats in JD1, a somewhat different arrangement of the silent cassettes, divergent inverted repeat sequences and general divergence in the vls sequences. We also present data that strongly suggest that dimerization is required for in vivo functionality of VlsE.


Subject(s)
Antigenic Variation , Antigens, Bacterial/genetics , Antigens, Bacterial/immunology , Bacterial Proteins/genetics , Bacterial Proteins/immunology , Borrelia burgdorferi/genetics , Borrelia burgdorferi/immunology , Lipoproteins/genetics , Lipoproteins/immunology , Animals , Disease Models, Animal , Lyme Disease/microbiology , Mice, Inbred C3H , Mice, SCID , Protein Multimerization , Recombination, Genetic , Sequence Analysis, DNA
6.
Mol Microbiol ; 109(5): 710-721, 2018 09.
Article in English | MEDLINE | ID: mdl-29995993

ABSTRACT

Borrelia burgdorferi evades the host immune system by switching the surface antigen. VlsE, in a process known as antigenic variation. The DNA mechanisms and genetic elements present on the vls locus that participate in the switching process remain to be elucidated. Manipulating the vls locus has been difficult due to its instability on Escherichia coli plasmids. In this study, we generated for the first time a mini-vls system composed of a single silent vlsE variable region (silent cassette 2) through the vlsE gene by performing some cloning steps directly in a highly transformable B. burgdorferi strain. Variants of the mini system were constructed with or without the long inverted repeat (IR) located upstream of vlsE and on both circular and linear plasmids to investigate the importance of the IR and plasmid topology on recombinational switching at vlsE. Amplicon sequencing using PacBio long read technology and analysis of the data with our recently reported pipeline and VAST software showed that the system undergoes switching in mice in both linear and circular versions and that the presence of the hairpin does not seem to be crucial in the linear version, however it is required when the topology is circular.


Subject(s)
Antigenic Variation , Antigens, Bacterial/genetics , Bacterial Proteins/genetics , Borrelia burgdorferi/immunology , Inverted Repeat Sequences/genetics , Lipoproteins/genetics , Lyme Disease/microbiology , Plasmids/genetics , Animals , Borrelia burgdorferi/genetics , DNA Primers , Genetic Loci/genetics , Genetic Vectors , Genome, Bacterial/genetics , Lyme Disease/blood , Mice , Mice, SCID
8.
Cell Rep ; 23(9): 2595-2605, 2018 05 29.
Article in English | MEDLINE | ID: mdl-29847791

ABSTRACT

The Lyme disease spirochete, Borrelia burgdorferi, uses antigenic variation as a strategy to evade the host's acquired immune response. New variants of surface-localized VlsE are generated efficiently by unidirectional recombination from 15 unexpressed vls cassettes into the vlsE locus. Using algorithms to analyze switching from vlsE sequencing data, we characterize a population of over 45,000 inferred recombination events generated during mouse infection. We present evidence for clustering of these recombination events within the population and along the vlsE gene, a role for the direct repeats flanking the variable region in vlsE, and the importance of sequence homology in determining the location of recombination, despite RecA's dispensability. Finally, we report that non-templated sequence variation is strongly associated with recombinational switching and occurs predominantly at the 5' end of conversion tracts. This likely results from an error-prone repair mechanism operational during recombinational switching that elevates the mutation rate > 5,000-fold in switched regions.


Subject(s)
Antigenic Variation/immunology , Borrelia burgdorferi/immunology , Immunoglobulin Class Switching/genetics , Lyme Disease/immunology , Lyme Disease/microbiology , Recombination, Genetic/genetics , Animals , Genetic Loci , INDEL Mutation/genetics , Mice, SCID , Polymorphism, Single Nucleotide/genetics , Sequence Homology, Amino Acid , Templates, Genetic
9.
Mol Microbiol ; 107(1): 104-115, 2018 01.
Article in English | MEDLINE | ID: mdl-29105221

ABSTRACT

The Lyme disease spirochete evades the host immune system by combinatorial variation of VlsE, a surface antigen. Antigenic variation occurs via segmental gene conversion from contiguous silent cassettes into the vlsE locus. Because of the high degree of similarity between switch variants and the size of vlsE, short-read NGS technologies have been unsuitable for sequencing vlsE populations. Here we use PacBio sequencing technology coupled with the first fully-automated software pipeline (VAST) to accurately process NGS data by minimizing error frequency, eliminating heteroduplex errors and accurately aligning switch variants. We extend earlier studies by showing use of almost all of the vlsE SNP repertoire. In different tissues of the same mouse, 99.6% of the variants were unique, suggesting that dissemination of Borrelia burgdorferi is predominantly unidirectional with little tissue-to-tissue hematogenous dissemination. We also observed a similar number of variants in SCID and wild-type mice, a heatmap of location and frequency of amino acid changes on the 3D structure and note differences observed in SCID versus wild type mice that hint at possible amino acid function. Our observed selection against diversification of residues at the dimer interface in wild-type mice strongly suggests that dimerization is required for in vivo functionality of vlsE.


Subject(s)
Antigenic Variation/genetics , Borrelia burgdorferi/genetics , High-Throughput Nucleotide Sequencing/methods , Animals , Antigens, Bacterial/genetics , Antigens, Bacterial/metabolism , Antigens, Surface/genetics , Bacteria/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Borrelia burgdorferi/metabolism , Gene Conversion , Genetic Variation , Lipoproteins/genetics , Lipoproteins/metabolism , Lyme Disease/genetics , Lyme Disease/immunology , Lyme Disease/metabolism , Mice , Mice, SCID , Recombination, Genetic
10.
J Med Chem ; 56(4): 1418-30, 2013 Feb 28.
Article in English | MEDLINE | ID: mdl-23409840

ABSTRACT

We report here the optimization of an HldE kinase inhibitor to low nanomolar potency, which resulted in the identification of the first reported compounds active on selected E. coli strains. One of the most interesting candidates, compound 86, was shown to inhibit specifically bacterial LPS heptosylation on efflux pump deleted E. coli strains. This compound did not interfere with E. coli bacterial growth (MIC > 32 µg/mL) but sensitized this pathogen to hydrophobic antibiotics like macrolides normally inactive on Gram-negative bacteria. In addition, 86 could sensitize E. coli to serum complement killing. These results demonstrate that HldE kinase is a suitable target for drug discovery. They also pave the way toward novel possibilities of treating or preventing bloodstream infections caused by pathogenic Gram negative bacteria by inhibiting specific virulence factors.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Benzothiazoles/chemical synthesis , Escherichia coli/drug effects , Multienzyme Complexes/antagonists & inhibitors , Nucleotidyltransferases/antagonists & inhibitors , Phosphotransferases (Alcohol Group Acceptor)/antagonists & inhibitors , Triazines/chemical synthesis , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Benzothiazoles/chemistry , Benzothiazoles/pharmacology , Escherichia coli/pathogenicity , Lipopolysaccharides/pharmacology , Microbial Sensitivity Tests , Structure-Activity Relationship , Triazines/chemistry , Triazines/pharmacology , Virulence/drug effects
11.
J Med Chem ; 56(4): 1405-17, 2013 Feb 28.
Article in English | MEDLINE | ID: mdl-23256532

ABSTRACT

As an essential constituent of the outer membrane of Gram-negative bacteria, lipopolysaccharide contributes significantly to virulence and antibiotic resistance. The lipopolysaccharide biosynthetic pathway therefore serves as a promising therapeutic target for antivirulence drugs and antibiotic adjuvants. Here we report the structural-functional studies of D-glycero-ß-D-manno-heptose 7-phosphate kinase (HldA), an absolutely conserved enzyme in this pathway, from Burkholderia cenocepacia. HldA is structurally similar to members of the PfkB carbohydrate kinase family and appears to catalyze heptose phosphorylation via an in-line mechanism mediated mainly by a conserved aspartate, Asp270. Moreover, we report the structures of HldA in complex with two potent inhibitors in which both inhibitors adopt a folded conformation and occupy the nucleotide-binding sites. Together, these results provide important insight into the mechanism of HldA-catalyzed heptose phosphorylation and necessary information for further development of HldA inhibitors.


Subject(s)
Anti-Bacterial Agents/chemistry , Bacterial Proteins/chemistry , Burkholderia cenocepacia/enzymology , Phosphotransferases (Alcohol Group Acceptor)/chemistry , Bacterial Proteins/genetics , Burkholderia cenocepacia/genetics , Crystallography, X-Ray , Models, Molecular , Mutation , Phosphotransferases (Alcohol Group Acceptor)/antagonists & inhibitors , Phosphotransferases (Alcohol Group Acceptor)/genetics , Protein Conformation , Structure-Activity Relationship , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...