Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Ecology ; : e4362, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38899533

ABSTRACT

Predicting the effects of warming temperatures on the abundance and distribution of organisms under future climate scenarios often requires extrapolating species-environment correlations to climatic conditions not currently experienced by a species, which can result in unrealistic predictions. For poikilotherms, incorporating species' thermal physiology to inform extrapolations under novel thermal conditions can result in more realistic predictions. Furthermore, models that incorporate species and spatial dependencies may improve predictions by capturing correlations present in ecological data that are not accounted for by predictor variables. Here, we present a joint species, spatially dependent physiologically guided abundance (jsPGA) model for predicting multispecies responses to climate warming. The jsPGA model uses a basis function approach to capture both species and spatial dependencies. We apply the jsPGA model to predict the response of eight fish species to projected climate warming in thousands of lakes in Minnesota, USA. By the end of the century, the cold-adapted species was predicted to have high probabilities of extirpation across its current range-with 10% of lakes currently inhabited by this species having an extirpation probability >0.90. The remaining species had varying levels of predicted changes in abundance, reflecting differences in their thermal physiology. Though the model did not identify many strong species dependencies, the variation in estimated spatial dependence across species suggested that accounting for both dependencies was important for predicting the abundance of these fishes. The jsPGA model provides a new tool for predicting changes in the abundance, distribution, and extirpation probability of poikilotherms under novel thermal conditions.

2.
Ecology ; 105(5): e4297, 2024 May.
Article in English | MEDLINE | ID: mdl-38613235

ABSTRACT

Forecasting invasion risk under future climate conditions is critical for the effective management of invasive species, and species distribution models (SDMs) are key tools for doing so. However, SDM-based forecasts are uncertain, especially when correlative statistical models extrapolate to nonanalog environmental domains, such as future climate conditions. Different assumptions about the functional form of the temperature-suitability relationship can impact predicted habitat suitability under novel conditions. Hence, methods to understand the sources of uncertainty are critical when applying SDMs. Here, we use high-resolution predictions of lake water temperatures to project changes in habitat suitability under future climate conditions for an invasive macrophyte (Myriophyllym spicatum). Future suitability was predicted using five global circulation models and three statistical models that assumed different species-temperature functional responses. The suitability of lakes for M. spicatum was overall predicted to increase under future climate conditions, but the magnitude and direction of change in suitability varied greatly among lakes. Variability was most pronounced for lakes under nonanalog temperature conditions, indicating that predictions for these lakes remained highly uncertain. Integrating predictions from SDMs that differ in their species-environment response function, while explicitly quantifying uncertainty across analog and nonanalog domains, can provide a more robust and useful approach to forecasting invasive species distribution under climate change.


Subject(s)
Climate Change , Introduced Species , Models, Biological , Uncertainty , Lakes , Demography , Magnoliopsida/physiology , Ecosystem , Temperature , Forecasting/methods
3.
Ecol Evol ; 11(18): 12567-12582, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34594521

ABSTRACT

AIM: Availability of uniformly collected presence, absence, and abundance data remains a key challenge in species distribution modeling (SDM). For invasive species, abundance and impacts are highly variable across landscapes, and quality occurrence and abundance data are critical for predicting locations at high risk for invasion and impacts, respectively. We leverage a large aquatic vegetation dataset comprising point-level survey data that includes information on the invasive plant Myriophyllum spicatum (Eurasian watermilfoil) to: (a) develop SDMs to predict invasion and impact from environmental variables based on presence-absence, presence-only, and abundance data, and (b) compare evaluation metrics based on functional and discrimination accuracy for presence-absence and presence-only SDMs. LOCATION: Minnesota, USA. METHODS: Eurasian watermilfoil presence-absence and abundance information were gathered from 468 surveyed lakes, and 801 unsurveyed lakes were leveraged as pseudoabsences for presence-only models. A Random Forest algorithm was used to model the distribution and abundance of Eurasian watermilfoil as a function of lake-specific predictors, both with and without a spatial autocovariate. Occurrence-based SDMs were evaluated using conventional discrimination accuracy metrics and functional accuracy metrics assessing correlation between predicted suitability and observed abundance. RESULTS: Water temperature degree days and maximum lake depth were two leading predictors influencing both invasion risk and abundance, but they were relatively less important for predicting abundance than other water quality measures. Road density was a strong predictor of Eurasian watermilfoil invasion risk but not abundance. Model evaluations highlighted significant differences: Presence-absence models had high functional accuracy despite low discrimination accuracy, whereas presence-only models showed the opposite pattern. MAIN CONCLUSION: Complementing presence-absence data with abundance information offers a richer understanding of invasive Eurasian watermilfoil's ecological niche and enables evaluation of the model's functional accuracy. Conventional discrimination accuracy measures were misleading when models were developed using pseudoabsences. We thus caution against the overuse of presence-only models and suggest directing more effort toward systematic monitoring programs that yield high-quality data.

SELECTION OF CITATIONS
SEARCH DETAIL
...