Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
1.
Elife ; 122024 Mar 18.
Article in English | MEDLINE | ID: mdl-38497812

ABSTRACT

Down syndrome (DS) is characterized by skeletal and brain structural malformations, cognitive impairment, altered hippocampal metabolite concentration and gene expression imbalance. These alterations were usually investigated separately, and the potential rescuing effects of green tea extracts enriched in epigallocatechin-3-gallate (GTE-EGCG) provided disparate results due to different experimental conditions. We overcame these limitations by conducting the first longitudinal controlled experiment evaluating genotype and GTE-EGCG prenatal chronic treatment effects before and after treatment discontinuation. Our findings revealed that the Ts65Dn mouse model reflected the pleiotropic nature of DS, exhibiting brachycephalic skull, ventriculomegaly, neurodevelopmental delay, hyperactivity, and impaired memory robustness with altered hippocampal metabolite concentration and gene expression. GTE-EGCG treatment modulated most systems simultaneously but did not rescue DS phenotypes. On the contrary, the treatment exacerbated trisomic phenotypes including body weight, tibia microarchitecture, neurodevelopment, adult cognition, and metabolite concentration, not supporting the therapeutic use of GTE-EGCG as a prenatal chronic treatment. Our results highlight the importance of longitudinal experiments assessing the co-modulation of multiple systems throughout development when characterizing preclinical models in complex disorders and evaluating the pleiotropic effects and general safety of pharmacological treatments.


Subject(s)
Down Syndrome , Animals , Mice , Female , Pregnancy , Down Syndrome/drug therapy , Down Syndrome/genetics , Trisomy , Genitalia , Head , Antioxidants , Disease Models, Animal
2.
Front Endocrinol (Lausanne) ; 15: 1310466, 2024.
Article in English | MEDLINE | ID: mdl-38352710

ABSTRACT

Introduction: Due to the relatively long life span of rodent models, in order to expediate the identification of novel therapeutics of age related diseases, mouse models of accelerated aging have been developed. In this study we examined skeletal changes in the male and female Klotho mutant (kl/kl) mice and in male and female chronically aged mice to determine whether the accelerated aging bone phenotype of the kl/kl mouse reflects changes in skeletal architecture that occur with chronological aging. Methods: 2, 6 and 20-23 month old C57BL/6 mice were obtained from the National Institute of Aging aged rodent colony and wildtype and kl/kl mice were generated as previously described by M. Kuro-o. Microcomputed tomography analysis was performed ex vivo to examine trabecular and cortical parameters from the proximal metaphyseal and mid-diaphyseal areas, respectively. Serum calcium and phosphate were analyzed using a colorimetric assay. The expression of duodenal Trpv6, which codes for TRPV6, a vitamin D regulated epithelial calcium channel whose expression reflects intestinal calcium absorptive efficiency, was analyzed by quantitative real-time PCR. Results and discussion: Trabecular bone volume (BV/TV) and trabecular number decreased continuously with age in males and females. In contrast to aging mice, an increase in trabecular bone volume and trabecular number was observed in both male and female kl/kl mice. Cortical thickness decreased with advancing age and also decreased in male and female kl/kl mice. Serum calcium and phosphate levels were significantly increased in kl/kl mice but did not change with age. Aging resulted in a decline in Trpv6 expression. In the kl/kl mice duodenal Trpv6 was significantly increased. Our findings reflect differences in bone architecture as well as differences in calcium and phosphate homeostasis and expression of Trpv6 between the kl/kl mutant mouse model of accelerated aging and chronological aging. Although the Klotho deficient mouse has provided a new understanding of the regulation of mineral homeostasis and bone metabolism, our findings suggest that changes in bone architecture in the kl/kl mouse reflect in part systemic disturbances that differ from pathophysiological changes that occur with age including dysregulation of calcium homeostasis that contributes to age related bone loss.


Subject(s)
Calcium , Glucuronidase , Animals , Female , Male , Mice , Aging/genetics , Glucuronidase/genetics , Glucuronidase/metabolism , Mice, Inbred C57BL , Phenotype , Phosphates , X-Ray Microtomography
3.
Front Endocrinol (Lausanne) ; 14: 1223021, 2023.
Article in English | MEDLINE | ID: mdl-37600714

ABSTRACT

Introduction: Neuropilin 2 (NRP2) mediates the effects of class 3 semaphorins and vascular endothelial growth factor and is implicated in axonal guidance and angiogenesis. Moreover, NRP2 expression is suggested to be involved in the regulation of bone homeostasis. Indeed, osteoblasts and osteoclasts express NRP2 and male and female global Nrp2 knockout mice have a reduced bone mass accompanied by reduced osteoblast and increased osteoclast counts. Methods: We first examined the in vitro effect of the calciotropic hormone 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] on Nrp2 transcription in osteoblasts. We next generated mice with a conditional deletion of Nrp2 in the osteoblast cell lineage under control of the paired related homeobox 1 promoter and mice with a conditional Nrp2 knockdown in osteoclasts under control of the Lysozyme promoter. Mice were examined under basal conditions or after treatment with either the bone anabolic vitamin D3 analog WY 1048 or with 1,25(OH)2D3. Results and discussion: We show that Nrp2 expression is induced by 1,25(OH)2D3 in osteoblasts and is associated with enrichment of the vitamin D receptor in an intronic region of the Nrp2 gene. In male mice, conditional deletion of Nrp2 in osteoblast precursors and mature osteoblasts recapitulated the bone phenotype of global Nrp2 knockout mice, with a reduced cortical cross-sectional tissue area and lower trabecular bone content. However, female mice with reduced osteoblastic Nrp2 expression display a reduced cross-sectional tissue area but have a normal trabecular bone mass. Treatment with the vitamin D3 analog WY 1048 (0.4 µg/kg/d, 14 days, ip) resulted in a similar increase in bone mass in both genotypes and genders. Deleting Nrp2 from the osteoclast lineage did not result in a bone phenotype, even though in vitro osteoclastogenesis of hematopoietic cells derived from mutant mice was significantly increased. Moreover, treatment with a high dose of 1,25(OH)2D3 (0.5 µg/kg/d, 6 days, ip), to induce osteoclast-mediated bone resorption, resulted in a similar reduction in trabecular and cortical bone mass. In conclusion, osteoblastic Nrp2 expression is suggested to regulate bone homeostasis in a sex-specific manner.


Subject(s)
Cancellous Bone , Neuropilin-2 , Osteoblasts , Animals , Female , Male , Mice , Cholecalciferol , Cross-Sectional Studies , Neuropilin-2/genetics , Vascular Endothelial Growth Factor A , Calcitriol
5.
Bioorg Chem ; 136: 106528, 2023 07.
Article in English | MEDLINE | ID: mdl-37054528

ABSTRACT

Intense synthetic efforts have been directed towards the development of noncalcemic analogs of 1,25-dihydroxyvitamin D3. We describe here the structural analysis and biological evaluation of two derivatives of 1,25-dihydroxyvitamin D3 with modifications limited to the replacement of the 25-hydroxyl group by a 25-amino or 25-nitro groups. Both compounds are agonists of the vitamin D receptor. They mediate biological effects similar to 1,25-dihydroxyvitamin D3, the 25-amino derivative being the most potent one while being less calcemic than 1,25-dihydroxyvitamin D3. The in vivo properties of the compounds make them of potential therapeutic value.


Subject(s)
Receptors, Calcitriol , Vitamin D , Vitamin D/pharmacology , Calcitriol/chemistry , Calcitriol/pharmacology
6.
Int J Mol Sci ; 23(15)2022 Jul 30.
Article in English | MEDLINE | ID: mdl-35955580

ABSTRACT

The Vitamin D receptor (VDR) plays a key role in calcium homeostasis, as well as in cell proliferation and differentiation. Among the large number of VDR ligands that have been developed, we have previously shown that BXL-62 and Gemini-72, two C-20-modified vitamin D analogs are highly potent VDR agonists. In this study, we show that both VDR ligands restore the transcriptional activities of VDR variants unresponsive to the natural ligand and identified in patients with rickets. The elucidated mechanisms of action underlying the activities of these C-20-modified analogs emphasize the mutual adaptation of the ligand and the VDR ligand-binding pocket.


Subject(s)
Receptors, Calcitriol , Rickets , Humans , Ligands , Protein Binding , Receptors, Calcitriol/agonists , Vitamin D
7.
Front Immunol ; 13: 902678, 2022.
Article in English | MEDLINE | ID: mdl-35784365

ABSTRACT

The hormonally-active form of vitamin D, 1,25-dihydroxyvitamin D3, can modulate both innate and adaptive immunity, through binding to the nuclear vitamin D receptor expressed in most immune cells. A high dose of regular vitamin D protected non-obese diabetic (NOD) mice against type 1 diabetes (T1D), when initiated at birth and given lifelong. However, considerable controversy exists on the level of circulating vitamin D (25-hydroxyvitamin D3, 25(OH)D3) needed to modulate the immune system in autoimmune-prone subjects and protect against T1D onset. Here, we evaluated the impact of two doses of dietary vitamin D supplementation (400 and 800 IU/day), given to female NOD mice from 3 until 25 weeks of age, on disease development, peripheral and gut immune system, gut epithelial barrier function, and gut bacterial taxonomy. Whereas serum 25(OH)D3 concentrations were 2.6- (400 IU/day) and 3.9-fold (800 IU/day) higher with dietary vitamin D supplementation compared to normal chow (NC), only the 800 IU/day vitamin D-supplemented diet delayed and reduced T1D incidence compared to NC. Flow cytometry analyses revealed an increased frequency of FoxP3+ Treg cells in the spleen of mice receiving the 800 IU/day vitamin D-supplemented diet. This vitamin D-induced increase in FoxP3+ Treg cells, also expressing the ecto-5'-nucleotidase CD73, only persisted in the spleen of mice at 25 weeks of age. At this time point, the frequency of IL-10-secreting CD4+ T cells was also increased in all studied immune organs. High-dose vitamin D supplementation was unable to correct gut leakiness nor did it significantly modify the increased gut microbial diversity and richness over time observed in NOD mice receiving NC. Intriguingly, the rise in alpha-diversity during maturation occurred especially in mice not progressing to hyperglycaemia. Principal coordinates analysis identified that both diet and disease status significantly influenced the inter-individual microbiota variation at the genus level. The abundance of the genera Ruminoclostridium_9 and Marvinbryantia gradually increased or decreased, respectively in faecal samples of mice on the 800 IU/day vitamin D-supplemented diet compared to mice on the 400 IU/day vitamin D-supplemented diet or NC, irrespective of disease outcome. In summary, dietary vitamin D reduced T1D incidence in female NOD mice at a dose of 800, but not of 400, IU/day, and was accompanied by an expansion of Treg cells in various lymphoid organs and an altered intestinal microbiota signature.


Subject(s)
Diabetes Mellitus, Type 1 , Gastrointestinal Microbiome , Animals , Diet , Female , Forkhead Transcription Factors , Humans , Mice , Mice, Inbred NOD , Vitamin D , Vitamins
8.
Front Endocrinol (Lausanne) ; 13: 886238, 2022.
Article in English | MEDLINE | ID: mdl-35784555

ABSTRACT

Active vitamin D3, 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], and its synthetically derived analogs possess potent anticancer properties. In breast cancer (BC) cells, 1,25(OH)2D3 blocks cell proliferation and induces apoptosis through different cell-type specific mechanisms. In this study, we evaluated if the combination of the potent vitamin D3 analog, inecalcitol, with a selective CDK4/6 inhibitor, palbociclib, enhanced the antiproliferative effects of both single compounds in hormone-sensitive (ER+) BC, for which palbociclib treatment is already approved, but also in triple-negative BC (TNBC). Inecalcitol and palbociclib combination treatment decreased cell proliferation in both ER+ (T47D-MCF7) and TNBC (BT20-HCC1143-Hs578T) cells, with a more pronounced antiproliferative effect in the former. In ER+ BC cells, the combination therapy downregulated cell cycle regulatory proteins (p)-Rb and (p)-CDK2 and blocked G1-S phase transition of the cell cycle. Combination treatment upregulated p-mTOR and p-4E-BP1 protein expression in MCF7 cells, whereas it suppressed expression of these proteins in BT20 cells. Cell survival was decreased after inecalcitol treatment either alone or combined in MCF7 cells. Interestingly, the combination therapy upregulated mitochondrial ROS and mitotracker staining in both cell lines. Furthermore, in vivo validation in a MCF7 cell line-derived xenograft mouse model decreased tumor growth and cell cycle progression after combination therapy, but not in a TNBC BT20 cell line-derived xenograft model. In conclusion, we show that addition of a potent vitamin D3 analog to selective CDK4/6 inhibitor treatment results in increased antiproliferative effects in ER+ BC both in vitro and in vivo.


Subject(s)
Triple Negative Breast Neoplasms , Alkynes , Animals , Cholecalciferol , Cyclin-Dependent Kinase 4 , Cyclin-Dependent Kinase 6 , Hormones , Humans , Mice , Piperazines , Pyridines , Triple Negative Breast Neoplasms/metabolism , Vitamin D
9.
Respir Res ; 23(1): 76, 2022 Mar 29.
Article in English | MEDLINE | ID: mdl-35351141

ABSTRACT

BACKGROUND: Evidence supports a critical role of vitamin D status on exacerbation in chronic obstructive pulmonary disease, indicating the need to avoid vitamin D deficiency in these patients. However, oral vitamin D supplementation is limited by the potential risk for hypercalcemia. In this study, we investigated if local delivery of vitamin D to the lungs improves vitamin D-mediated anti-inflammatory action in response to acute inflammation without inducing hypercalcemia. METHODS: We studied vitamin D sufficient (VDS) or deficient (VDD) mice in whom 1α,25(OH)2D3 (0.2 µg/kg) or a vehicle followed by lipopolysaccharide (LPS 25 µg) were delivered to the lung as a micro-spray. RESULTS: Local 1α,25(OH)2D3 reduced LPS-induced inflammatory cells in bronchoalveolar lavage (BAL) in VDS (absolute number of cells: - 57% and neutrophils - 51% p < 0.01) and tended to diminish LPS-increased CXCL5 BAL levels in VDS (- 40%, p = 0.05) while it had no effect on CXCL1 and CXCL2 in BAL and mRNA in lung of VDS and VDD. It also significantly attenuated the increased IL-13 in BAL and lung, especially in VDD mice (- 41 and - 75%, respectively). mRNA expression of Claudin-18 in lung was significantly lower in VDS mice with local 1α,25(OH)2D3 while Claudin-3, -5 and -8 mRNA levels remained unchanged. Finally, in VDD mice only, LPS reduced lung mRNA expression of adhesion junction Zona-occludens-1, in addition to increasing uric acid and total protein in BAL, which both were prevented by local 1α,25(OH)2D3. CONCLUSION: Under normal levels of vitamin D, local 1α,25(OH)2D3 nebulization into the lung efficiently reduced LPS induction of inflammatory cells in BAL and slightly attenuated LPS-increase in CXCL5. In case of severe vitamin D deficiency, although local 1α,25(OH)2D3 nebulization failed to significantly minimize cellular inflammation in BAL at this dose, it prevented epithelial barrier leakage and damage in lung. Additional research is needed to determine the potential long-term beneficial effects of local 1α,25(OH)2D3 nebulization on lung inflammation.


Subject(s)
Pneumonia , Vitamin D Deficiency , Animals , Humans , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/prevention & control , Lipopolysaccharides/toxicity , Mice , Pneumonia/chemically induced , Pneumonia/drug therapy , Pneumonia/prevention & control , Vitamin D
10.
Bone Rep ; 16: 101172, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35198658

ABSTRACT

Bone microarchitecture is an important component of bone quality and disturbances may reduce bone strength and resistance to trauma. Kidney transplant recipients have an excess risk of fractures, and bone loss affecting both trabecular and cortical bone compartments have been demonstrated after kidney transplantation. The primary aim of this study was to investigate the impact of kidney transplantation on trabecular and cortical bone microarchitecture, assessed by histomorphometry and micro computed tomography (µCT). Iliac crest bone biopsies, analyzed by bone histomorphometry and µCT, were performed at time of kidney transplantation and 12 months post-transplantation in an unselected cohort of 30 patients. Biochemical markers of mineral metabolism and bone turnover were measured at both time-points. At 12 months post-transplantation, bone turnover was low in 5 (17%) and normal in 25 (83%) patients. By histomorphometry, bone remodeling normalized, with decreases in eroded perimeters (4.0 to 2.1%, p = 0.02) and number of patients with marrow fibrosis (41 to 0%, p < 0.001). By µCT, trabecular thickness (134 to 125 µM, p = 0.003) decreased slightly. Other parameters of bone volume and microarchitecture, including cortical thickness (729 to 713 µm, p = 0.73) and porosity (10.2 to 9.5%, p = 0.15), remained stable. We conclude that kidney transplantation with current immunosuppressive protocols has a limited impact on bone microarchitecture.

11.
Endocr Relat Cancer ; 29(2): R33-R55, 2022 01 24.
Article in English | MEDLINE | ID: mdl-34935629

ABSTRACT

The active form of vitamin D3, 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), is primarily known as a key regulator of calcium and phosphate homeostasis. It exerts its biological functions by binding to the vitamin D receptor (VDR), a transcription factor that regulates gene expression in vitamin D-target tissues such as intestine, kidney and bone. Yet, the VDR is expressed in many additional normal and cancerous tissues, where it moderates the antiproliferative, prodifferentiating and immune-modulating effects of 1,25(OH)2D3. Interestingly, several epidemiological studies show that low levels of 25(OH)D, a biological marker for 1,25(OH)2D3 status, are associated with an increased risk of breast cancer (BC) development. Mendelian randomization studies, however, did not find any relationship between single-nucleotide polymorphisms in genes associated with lower serum 25(OH)D and BC risk. Nevertheless, multiple and in vivo preclinical studies illustrate that 1,25(OH)2D3 or its less calcaemic structural analogues influence diverse cellular processes in BC such as proliferation, differentiation, apoptosis, autophagy and the epithelial-mesenchymal transition. Recent insights also demonstrate that 1,25(OH)2D3 treatment impacts on cell metabolism and on the cancer stem cell population. The presence of VDR in the majority of BCs, together with the various anti-tumoural effects of 1,25(OH)2D3, has supported the evaluation of the effects of vitamin D3 supplementation on BC development. However, most randomized controlled clinical trials do not demonstrate a clear decrease in BC incidence with vitamin D3 supplementation. However, 1,25(OH)2D3 or its analogues seem biologically more active and may have more potential anticancer activity in BC upon combination with existing cancer therapies.


Subject(s)
Breast Neoplasms , Breast/metabolism , Breast Neoplasms/metabolism , Cholecalciferol , Female , Humans , Receptors, Calcitriol/genetics , Receptors, Calcitriol/metabolism , Vitamin D/therapeutic use , Vitamins
12.
JBMR Plus ; 5(12): e10577, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34950832

ABSTRACT

1,25(OH)2D3, the biologically active form of vitamin D3, is a major regulator of mineral and bone homeostasis and exerts its actions through binding to the vitamin D receptor (VDR), a ligand-activated transcription factor that can directly modulate gene expression in vitamin D-target tissues such as the intestine, kidney, and bone. Inactivating VDR mutations or vitamin D deficiency during development results in rickets, hypocalcemia, secondary hyperparathyroidism, and hypophosphatemia, pointing to the critical role of 1,25(OH)2D3-induced signaling in the maintenance of mineral homeostasis and skeletal health. 1,25(OH)2D3 is a potent stimulator of VDR-mediated intestinal calcium absorption, thus increasing the availability of calcium required for proper bone mineralization. However, when intestinal calcium absorption is impaired, renal calcium reabsorption is increased and calcium is mobilized from the bone to preserve normocalcemia. Multiple cell types within bone express the VDR, thereby allowing 1,25(OH)2D3 to directly affect bone homeostasis. In this review, we will discuss different transgenic mouse models with either Vdr deletion or overexpression in chondrocytes, osteoblasts, osteocytes, or osteoclasts to delineate the direct effects of 1,25(OH)2D3 on bone homeostasis. We will address the bone cell type-specific effects of 1,25(OH)2D3 in conditions of a positive calcium balance, where the amount of (re)absorbed calcium equals or exceeds fecal and renal calcium losses, as well as during a negative calcium balance, due to selective Vdr knockdown in the intestine or triggered by a low calcium diet. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

13.
J Endocrinol ; 251(3): 207-222, 2021 11 05.
Article in English | MEDLINE | ID: mdl-34612843

ABSTRACT

Vitamin D is important for gonadal function in rodents, and improvement of vitamin D status in men with low sperm counts increases live birth rate. Vitamin D is a regulator of transcellular calcium transport in the intestine and kidney and may influence the dramatic changes in the luminal calcium concentration in epididymis. Here, we show spatial expression in the male reproductive tract of vitamin D receptor (VDR)-regulated factors involved in calcium transport: transient receptor potential vanilloid 5/6 , sodium/calcium exchanger 1, plasma membrane calcium ATPase 1, calbindin D9k, calcium-sensing receptor (CaSR), and parathyroid hormone-related peptide (PTHrP) in mouse and human testis and epididymis. Testicular Casr expression was lower in Vdr ablated mice compared with controls. Moreover, expression levels of Casr and Pthrp were strongly correlated in both testis and epididymis and Pthrp was suppressed by 1,25(OH)2D3 in a spermatogonial cell line. The expression of CaSR in epididymis may be of greater importance than in the gonad in mice as germ cell-specific Casr deficient mice had no major reproductive phenotype, and coincubation with a CaSR-agonist had no effect on human sperm-oocyte binding. In humans, seminal calcium concentration between 5 and 10 mM was associated with a higher fraction of motile and morphologically normal sperm cells, and the seminal calcium concentration was not associated with serum calcium levels. In conclusion, VDR regulates CaSR and PTHrP, and both factors may be involved in the regulation of calcium transport in the male reproductive tract with possible implications for sperm function and storage.


Subject(s)
Calcium/metabolism , Epididymis/metabolism , Receptors, Calcitriol/metabolism , Receptors, Calcium-Sensing/metabolism , Testis/metabolism , Animals , Gene Expression Regulation/drug effects , Gene Knockdown Techniques , Humans , Infertility, Male/metabolism , Male , Mice , Mice, Knockout , Parathyroid Hormone-Related Protein/genetics , Parathyroid Hormone-Related Protein/metabolism , Plasma Membrane Calcium-Transporting ATPases/genetics , Plasma Membrane Calcium-Transporting ATPases/metabolism , Receptors, Calcium-Sensing/genetics , S100 Calcium Binding Protein G/genetics , S100 Calcium Binding Protein G/metabolism , Semen , Sodium-Calcium Exchanger/genetics , Sodium-Calcium Exchanger/metabolism , Sperm-Ovum Interactions , TRPV Cation Channels/genetics , TRPV Cation Channels/metabolism
14.
Bioorg Chem ; 111: 104878, 2021 06.
Article in English | MEDLINE | ID: mdl-33853023

ABSTRACT

The hypercalcemic effects of the hormone 1α,25-dihydroxyvitamin D3 (calcitriol) and most of known vitamin D metabolites and analogs call for the development of non secosteroidal vitamin D receptor (VDR) ligands as new selective and noncalcemic agonists for treatment of hyperproliferative diseases. We report on the in silico design and stereoselective synthesis of six lithocholic acid derivatives as well as on the calcemic activity of a potent LCA derivative and its crystallographic structure in complex with zVDR LBD. The low calcemic activity of this compound in comparison with the native hormone makes it of potential therapeutic value. Structure-function relationships provide the basis for the development of even more potent and selective lithocholic acid-based VDR ligands.


Subject(s)
Lithocholic Acid/pharmacology , Receptors, Calcitriol/agonists , Dose-Response Relationship, Drug , Humans , Lithocholic Acid/chemical synthesis , Lithocholic Acid/chemistry , Molecular Structure , Structure-Activity Relationship , Tumor Cells, Cultured
15.
Mol Cell Biol ; 41(1)2020 12 21.
Article in English | MEDLINE | ID: mdl-33139494

ABSTRACT

Although vitamin D is critical for the function of the intestine, most studies have focused on the duodenum. We show that transgenic expression of the vitamin D receptor (VDR) only in the distal intestine of VDR null mice (KO/TG mice) results in the normalization of serum calcium and rescue of rickets. Although it had been suggested that calcium transport in the distal intestine involves a paracellular process, we found that the 1,25-dihydroxyvitamin D3 [1,25(OH)2D3]-activated genes in the proximal intestine associated with active calcium transport (Trpv6, S100g, and Atp2b1) are also induced by 1,25(OH)2D3 in the distal intestine of KO/TG mice. In addition, Slc30a10, encoding a manganese efflux transporter, was one of the genes most induced by 1,25(OH)2D3 in both proximal and distal intestine. Both villus and crypt were found to express Vdr and VDR target genes. RNA sequence (RNA-seq) analysis of human enteroids indicated that the effects of 1,25(OH)2D3 observed in mice are conserved in humans. Using Slc30a10-/- mice, a loss of cortical bone and a marked decrease in S100g and Trpv6 in the intestine was observed. Our findings suggest an interrelationship between vitamin D and intestinal Mn efflux and indicate the importance of distal intestinal segments to vitamin D action.


Subject(s)
Calcitriol/genetics , Intestinal Mucosa/metabolism , Intestines/physiology , Animals , Calcitriol/metabolism , Calcium/metabolism , Genomics , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic , Plasma Membrane Calcium-Transporting ATPases/metabolism , Receptors, Calcitriol/genetics , Receptors, Calcitriol/metabolism , Vitamin D/analogs & derivatives , Vitamin D/metabolism , Vitamin D/pharmacology
16.
Int J Obes (Lond) ; 44(10): 2165-2176, 2020 10.
Article in English | MEDLINE | ID: mdl-32546862

ABSTRACT

BACKGROUND: Bone loss and increased fracture risk following bariatric surgery has been reported. We investigated whether the two most commonly performed surgeries, sleeve gastrectomy (SG) and Roux-en-Y gastric bypass (RYGB), lead to bone loss. In addition, we examined whether fortification of the diet with calcium citrate prevents bone loss. METHODS: We used mouse models for SG and RYGB and compared bone loss with a group of sham mice with similar weight loss. All groups were switched at the time of surgery to a low-fat diet (LFD). We also examined whether fortification of the diet with calcium citrate and vitamin D was able to prevent bone loss. RESULTS: At 2 weeks we observed no major bone effects. However, at 8 weeks, both trabecular and cortical bone were lost to the same extent after SG and RYGB, despite increased calcium absorption and adequate serum levels of calcium, vitamin D, and parathyroid hormone (PTH). Diet fortification with calcium citrate and vitamin D was able to partially prevent bone loss. CONCLUSIONS: Both SG and RYGB lead to excess bone loss, despite intestinal adaptations to increase calcium absorption. Fortifying the diet with calcium citrate and vitamin D partly prevented the observed bone loss. This finding emphasizes the importance of nutritional support strategies after bariatric surgery, but also affirms that the exact mechanisms leading to bone loss after bariatric surgery remain elusive and thus warrant further research.


Subject(s)
Bone Resorption/etiology , Gastrectomy/adverse effects , Gastric Bypass/adverse effects , Animals , Bone Resorption/prevention & control , Calcium/administration & dosage , Calcium/blood , Diet , Dietary Supplements , Eating , Male , Mice , Mice, Inbred C57BL , Parathyroid Hormone/blood , Vitamin D/administration & dosage , Vitamin D/blood , Weight Loss
17.
Handb Exp Pharmacol ; 262: 47-63, 2020.
Article in English | MEDLINE | ID: mdl-31792684

ABSTRACT

Vitamin D is a principal factor required for mineral and skeletal homeostasis. Vitamin D deficiency during development causes rickets and in adults can result in osteomalacia and increased risk of fracture. 1,25-Dihydroxyvitamin D3 (1,25(OH)2D3), the hormonally active form of vitamin D, is responsible for the biological actions of vitamin D which are mediated by the vitamin D receptor (VDR). Mutations in the VDR result in early-onset rickets and low calcium and phosphate, indicating the essential role of 1,25(OH)2D3/VDR signaling in the regulation of mineral homeostasis and skeletal health. This chapter summarizes our current understanding of the production of the vitamin D endocrine hormone, 1,25(OH)2D3, and the actions of 1,25(OH)2D3 which result in the maintenance of skeletal homeostasis. The primary role of 1,25(OH)2D3 is to increase calcium absorption from the intestine and thus to increase the availability of calcium for bone mineralization. Specific actions of 1,25(OH)2D3 on the intestine, kidney, and bone needed to maintain calcium homeostasis are summarized, and the impact of vitamin D status on bone health is discussed.


Subject(s)
Rickets , Vitamin D , Bone and Bones , Calcium/chemistry , Calcium/metabolism , Humans
18.
J Steroid Biochem Mol Biol ; 195: 105478, 2019 12.
Article in English | MEDLINE | ID: mdl-31561003

ABSTRACT

The long-recognized role of the vitamin D endocrine system is to maintain stable serum calcium concentrations, which are ensured by a complex interplay between parathyroid gland, kidney, intestine, and bone. However, although VDR is expressed in osteoclastogenic cells, the contribution of VDR-mediated signaling to osteoclast differentiation and activity remains undefined. We therefore deleted Vdr expression efficiently and specifically in myeloid cells by use of M lysozyme-driven Cre expression, which targets granulocytes, monocytes, macrophages and osteoclasts (Vdrmyel- mice). Bone and calcium homeostasis were investigated under basal conditions and in conditions of increased bone remodeling, by feeding Vdrmyel- and Vdrmyel+ (wildtype) mice either a normal (1%) or a low (0.02%) calcium diet from weaning onwards. Vdrmyel- mice developed normally and were normocalcemic at the age of 8 weeks, both at the normal and the low calcium diet. No differences in trabecular or cortical bone mass were observed between Vdrmyel- mice and their wildtype littermates. Dietary calcium restriction resulted in a comparable reduction of trabecular bone mass (40%) and cortical thickness (48%) in Vdrmyel- and Vdrmyel+ mice, pointing to a massive transfer of calcium from the bone to the serum. In agreement with these results, osteoclastic differentiation of hematopoietic cells of Vdrmyel- mice, either induced by M-CSF and RANKL, or cocultured with osteoblasts, occurred as efficiently as osteoclastogenesis from Vdrmyel+ mice. In conclusion, our data do not support a role for osteoclastic Vdr signaling in the control of bone homeostasis.


Subject(s)
Bone and Bones/metabolism , Osteoclasts/metabolism , Receptors, Calcitriol/metabolism , Animals , Calcium/deficiency , Calcium, Dietary , Cells, Cultured , Coculture Techniques , Female , Homeostasis , Macrophages, Peritoneal/metabolism , Mice, Transgenic , Osteoblasts/metabolism , Receptors, Calcitriol/genetics
19.
Nutrients ; 11(9)2019 Sep 06.
Article in English | MEDLINE | ID: mdl-31500220

ABSTRACT

In chronic obstructive pulmonary disease (COPD), the bronchial epithelium is the first immune barrier that is triggered by cigarette smoke. Although vitamin D (vitD) has proven anti-inflammatory and antimicrobial effects in alveolar macrophages, little is known about the direct role of vitD on cigarette smoke-exposed bronchial epithelial cells. We examined the effects of vitD on a human bronchial epithelial cell line (16HBE) and on air-liquid culture of primary bronchial epithelial cells (PBEC) of COPD patients and controls exposed for 24 h to cigarette smoke extract (CSE). VitD decreased CSE-induced IL-8 secretion by 16HBE cells, but not by PBEC. VitD significantly increased the expression of the antimicrobial peptide cathelicidin in 16HBE and PBEC of both COPD subjects and controls. VitD did not affect epithelial to mesenchymal transition or epithelial MMP-9 expression and was not able to restore impaired wound healing by CSE in 16HBE cells. VitD increased the expression of its own catabolic enzyme CYP24A1 thereby maintaining its negative feedback. In conclusion, vitD supplementation may potentially reduce infectious exacerbations in COPD by the upregulation of cathelicidin in the bronchial epithelium.


Subject(s)
Bronchi/drug effects , Epithelial Cells/drug effects , Pulmonary Disease, Chronic Obstructive/metabolism , Smoke/adverse effects , Tobacco Products/adverse effects , Vitamin D/analogs & derivatives , Aged , Antimicrobial Cationic Peptides/genetics , Antimicrobial Cationic Peptides/metabolism , Bronchi/metabolism , Bronchi/pathology , Case-Control Studies , Cell Line , Epithelial Cells/metabolism , Epithelial Cells/pathology , Female , Humans , Interleukin-8/metabolism , Male , Pulmonary Disease, Chronic Obstructive/genetics , Pulmonary Disease, Chronic Obstructive/pathology , Receptors, Calcitriol/agonists , Receptors, Calcitriol/genetics , Receptors, Calcitriol/metabolism , Vitamin D/metabolism , Vitamin D/pharmacology , Vitamin D3 24-Hydroxylase/genetics , Vitamin D3 24-Hydroxylase/metabolism , Cathelicidins
20.
J Steroid Biochem Mol Biol ; 188: 124-130, 2019 04.
Article in English | MEDLINE | ID: mdl-30611910

ABSTRACT

Bisphosphonates like risedronate inhibit osteoclast-mediated bone resorption and are therefore used in the prevention and treatment of osteoporosis. Also vitamin D3 and calcium supplementation is commonly used in the prevention or treatment of osteoporosis. Combined therapy of risedronate with 1,25(OH)2D3, the active metabolite of vitamin D3, may be advantageous over the use of either monotherapy, but bears a risk of causing hypercalcemia thereby decreasing the therapeutic window for osteoporosis treatment. In this study, we evaluated the effect on bone mass of the combination of risedronate with the 17-methyl 19-nor five-membered D-ring vitamin D3 analog WY 1048 in a mouse ovariectomy model for postmenopausal osteoporosis. Ovariectomy-induced bone loss was restored by administration of risedronate or a combination of risedronate with 1,25(OH)2D3. However, the combination of WY 1048 with risedronate induced an even higher increase on total body and spine bone mineral density and on trabecular and cortical bone mass. Our data indicate that combination therapy of risedronate with WY 1048 was superior in restoring and improving bone mass over a combination of risedronate with 1,25(OH)2D3 with minimal calcemic side effects.


Subject(s)
Bone Density Conservation Agents/therapeutic use , Cholecalciferol/therapeutic use , Osteoporosis, Postmenopausal/drug therapy , Risedronic Acid/therapeutic use , Vitamins/therapeutic use , Animals , Bone Density/drug effects , Cholecalciferol/analogs & derivatives , Disease Models, Animal , Female , Humans , Mice , Osteoporosis, Postmenopausal/pathology , Vitamins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...