Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
Add more filters










Publication year range
1.
Cell Biochem Biophys ; 2024 May 02.
Article in English | MEDLINE | ID: mdl-38696103

ABSTRACT

The therapeutic potential of chemically synthesized AuNPs has been demonstrated in various types of cancer. However, gold nanoparticles (AuNPs) synthesized using typical chemical methods have concerns regarding their environmental safety and adverse impact on human well-being. To overcome this issue, we used an environmentally friendly approach in which gold nanoparticles were synthesized using Moringa oleifera leaf extract (MLE). The present research was mainly focused on the biosynthesis and characterization of gold nanoparticles (AuNPs) using Moringa oleifera leaf extract (MLE-AuNPs) and explore its anticancer potential against Dalton's Lymphoma (DL) cells. Characterization of the MLE-AuNPs was conducted using UV-Vis Spectroscopy to confirm the reduction process, FTIR analysis to ascertain the presence of functional groups, and XRD analysis to confirm the crystallinity. SEM and TEM images were used to examine size and morphology. After characterization, MLE-AuNPs were evaluated for their cytotoxic effects on Dalton's lymphoma cells, and the results showed an IC50 value of 75 ± 2.31 µg/mL; however, there was no discernible cytotoxicity towards normal murine thymocytes. Furthermore, flow cytometric analysis revealed G2/M phase cell cycle arrest mediated by the downregulation of cyclin B1 and Cdc2 and upregulation of p21. Additionally, apoptosis induction was evidenced by Annexin V Staining, accompanied by modulation of apoptosis-related genes including decreased Bcl-2 expression and increased expression of Bax, Cyt-c, and Caspase-3 at both the mRNA and protein levels. Collectively, our findings underscore the promising anti-cancer properties of MLE-AuNPs, advocating their potential as a novel therapeutic avenue for Dalton's lymphoma.

2.
J Exp Bot ; 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38600846

ABSTRACT

The eukaryotic cytoskeleton is a complex scaffold consisting of actin filaments, intermediate filaments, and microtubules. Though fungi and plants lack intermediate filaments, the dynamic structural network of actin filaments and microtubules regulates cell shape, division, polarity, and vesicular trafficking in both. However, the specialized functions of the cytoskeleton during plant-fungus interactions remain elusive. Recent reports demonstrate that the plant cytoskeleton responds to signal cues and pathogen invasion through remodeling, thereby coordinating immune receptor trafficking, membrane microdomain formation, aggregation of organelles, and transport of defense compounds. Emerging evidence also suggests that cytoskeleton remodeling further regulates host immunity by triggering salicylic acid signaling, reactive oxygen species generation, and pathogenesis-related gene expression. Interestingly, during host invasion, fungi undergo systematic cytoskeleton remodeling, which is crucial for successful host penetration and colonization. Furthermore, phytohormones act as an essential regulator of plant cytoskeleton dynamics and are frequently targeted by fungal effectors to disrupt the host's growth-defense balance. In this review, we comprehensively discussed recent advances in the understanding of cytoskeleton dynamics during plant-fungus interaction and provided novel insights explaining the phytohormone relationship with cytoskeleton remodeling upon pathogen attack. We also highlight the importance of fungal cytoskeleton rearrangements during host colonization and provide directions for future investigations in this field.

3.
Trends Plant Sci ; 29(4): 397-399, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38092630

ABSTRACT

Pathogens rely on their effector proteins to colonize host plants. These effectors have diverse functions. A recent study by Li et al. highlights the significance of protein modularity in generating functional diversity among Phytophthora effectors. It underscores the sophisticated tactics that phytopathogens adopt to alter host cellular processes.


Subject(s)
Phytophthora , Plants , Plants/genetics , Phytophthora/genetics , Phytophthora/metabolism , Plant Diseases , Host-Pathogen Interactions
4.
Plant Sci ; 334: 111781, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37392939

ABSTRACT

Ascochyta blight (AB) disease caused by the fungus Ascochyta rabiei is a major threat to global chickpea production. Molecular breeding for improved AB resistance requires the identification of robust fine-mapped QTLs/candidate genes and associated markers. Earlier, we identified three QTLs (qABR4.1, qABR4.2, and qABR4.3) for AB resistance on chickpea chromosome 4 by employing multiple quantitative trait loci sequencing strategy on an intra-specific (FLIP84-92C x PI359075) and an inter-specific (FLIP84-92C x PI599072) crosses derived recombinant inbred lines. Here, we report the identification of AB resistance providing candidate genes under the fine mapped qABR4.2 and qABR4.3 genomic region by combining genetic mapping, haplotype block inheritance, and expression analysis. The qABR4.2 region was narrowed down from 5.94 Mb to ∼800 kb. Among 34 predicted gene models, a secreted class III peroxidase encoding gene showed higher expression in AB-resistant parent after A. rabiei conidia inoculation. Under qABR4.3, we identified a frame-shift mutation in a cyclic nucleotide-gated channel CaCNGC1 gene leading to the truncated N-terminal domain in resistant accession of chickpea. The extended N-terminal domain of CaCNGC1 interacts with chickpea calmodulin. Thus, our analysis has revealed narrowed genomic regions and their associated polymorphic markers, namely CaNIP43 and CaCNGCPD1. These co-dominant markers significantly associate with AB resistance on qABR4.2 and qABR4.3 regions. Our genetic analysis revealed that the presence of AB-resistant alleles at two major QTLs (qABR4.1 and qABR4.2) together provide AB resistance in the field while minor QTL qABR4.3 determines the degree of resistance. The identified candidate genes and their diagnostic markers will assist in the biotechnological advancement and introgression of AB resistance into locally adapted chickpea varieties used by farmers.


Subject(s)
Cicer , Humans , Cicer/genetics , Chromosomes, Human, Pair 4 , Chromosome Mapping , Quantitative Trait Loci/genetics , Genomics
5.
Planta ; 258(2): 31, 2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37368167

ABSTRACT

MAIN CONCLUSION: This review provides a detailed structural and functional understanding of BBR/BPC TF, their conservation across the plant lineage, and their comparative study with animal GAFs. Plant-specific Barley B Recombinant/Basic PentaCysteine (BBR/BPC) transcription factor (TF) family binds to "GA" repeats similar to animal GAGA Factors (GAFs). These GAGA binding proteins are among the few TFs that regulate the genes at multiple steps by modulating the chromatin structure. The hallmark of the BBR/BPC TF family is the presence of a conserved C-terminal region with five cysteine residues. In this review, we present: first, the structural distinct yet functional similar relation of plant BBR/BPC TF with animal GAFs, second, the conservation of BBR/BPC across the plant lineage, third, their role in planta, fourth, their potential interacting partners and structural insights. We conclude that BBR/BPC TFs have multifaceted roles in plants. Besides the earliest identified function in homeotic gene regulation and developmental processes, presently BBR/BPC TFs were identified in hormone signaling, stress, circadian oscillation, and sex determination processes. Understanding how plants' development and stress processes are coordinated is central to divulging the growth-immunity trade-off regulation. The BBR/BPC TFs may hold keys to divulge the interactions between development and immunity. Moreover, the conservation of BBR/BPC across plant lineage makes it an evolutionary vital gene family. Consequently, BBR/BPCs are prospective to attract the increasing attention of the scientific communities as they are probably at the crossroads of diverse fundamental processes.


Subject(s)
Plants , Transcription Factors , Animals , Transcription Factors/genetics , Transcription Factors/metabolism , Prospective Studies , Plants/genetics , Plants/metabolism , Carrier Proteins/genetics , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism
6.
Fungal Genet Biol ; 166: 103798, 2023 05.
Article in English | MEDLINE | ID: mdl-37059379

ABSTRACT

The Spot Blotch (SB) caused by hemibiotrophic fungal pathogen Bipolaris sorokiniana is one of the most devastating wheat diseases leading to 15-100% crop loss. However, the biology of Triticum-Bipolaris interactions and host immunity modulation by secreted effector proteins remain underexplored. Here, we identified a total of 692 secretory proteins including 186 predicted effectors encoded by B. sorokiniana genome. Gene Ontology categorization showed that these proteins belong to cellular, metabolic and signaling processes, and exhibit catalytic and binding activities. Further, we functionally characterized a cysteine-rich, B. sorokiniana Candidate Effector 66 (BsCE66) that was induced at 24-96 hpi during host colonization. The Δbsce66 mutant did not show vegetative growth defects or stress sensitivity compared to wild-type, but developed drastically reduced necrotic lesions upon infection in wheat plants. The loss-of-virulence phenotype was rescued upon complementing the Δbsce66 mutant with BsCE66 gene. Moreover, BsCE66 does not form homodimer and conserved cysteine residues form intra-molecular disulphide bonds. BsCE66 localizes to the host nucleus and cytosol, and triggers a strong oxidative burst and cell death in Nicotiana benthamiana. Overall, our findings demonstrate that BsCE66 is a key virulence factor that is necessary for host immunity modulation and SB disease progression. These findings would significantly improve our understanding of Triticum-Bipolaris interactions and assist in the development of SB resistant wheat varieties.


Subject(s)
Ascomycota , Bipolaris , Virulence/genetics , Triticum/microbiology , Cysteine/genetics , Plant Diseases/microbiology
7.
Curr Top Med Chem ; 23(17): 1664-1698, 2023.
Article in English | MEDLINE | ID: mdl-36974409

ABSTRACT

Coronavirus is a single-stranded RNA virus discovered by virologist David Tyrrell in 1960. Till now seven human corona viruses have been identified including HCoV-229E, HCoVOC43, HCoV-NL63, HCoV-HKU1, SARS-CoV, MERS-CoV and SARS-CoV-2. In the present scenario, the SARS-CoV-2 outbreak causing SARS-CoV-2 pandemic, became the most serious public health emergency of the century worldwide. Natural products have long history and advantages for the drug discovery process. Almost 80% of drugs present in market are evolved from the natural resources. With the outbreak of SARS-CoV-2 pandemic, natural product chemists have made significant efforts for the identification of natural molecules which can be effective against the SARSCoV- 2. In current compilation we have discussed in vitro and in vivo anti-viral potential of natural product-based leads for the treatment of SARS-CoV-2. We have classified these leads in different classes of natural products such as alkaloids, terpenoids, flavonoids, polyphenols, quinones, cannabinoids, steroids, glucosinolates, diarylheptanoids, etc. and discussed the efficacy and mode of action of these natural molecules. The present review will surely opens new direction in future for the development of promising drug candidates, particularly from the natural origin against coronaviruses and other viral diseases.


Subject(s)
Biological Products , COVID-19 , Middle East Respiratory Syndrome Coronavirus , Humans , SARS-CoV-2 , Biological Products/pharmacology , Chemistry, Pharmaceutical , Middle East Respiratory Syndrome Coronavirus/genetics , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use
8.
Planta ; 257(3): 54, 2023 Feb 13.
Article in English | MEDLINE | ID: mdl-36780015

ABSTRACT

MAIN CONCLUSION: Lysin motif (LysM)-receptor-like kinase (RLK) and leucine-rich repeat (LRR)-RLK mediated signaling play important roles in the development and regulation of root nodule symbiosis in legumes. The availability of water and nutrients in the soil is a major limiting factor affecting crop productivity. Plants of the Leguminosae family form a symbiotic association with nitrogen-fixing Gram-negative soil bacteria, rhizobia for nitrogen fixation. This symbiotic relationship between legumes and rhizobia depends on the signal exchange between them. Plant receptor-like kinases (RLKs) containing lysin motif (LysM) and/or leucine-rich repeat (LRR) play an important role in the perception of chemical signals from rhizobia for initiation and establishment of root nodule symbiosis (RNS) that results in nitrogen fixation. This review highlights the diverse aspects of LysM-RLK and LRR receptors including their specificity, functions, interacting partners, regulation, and associated signaling in RNS. The activation of LysM-RLKs and LRR-RLKs is important for ensuring the successful interaction between legume roots and rhizobia. The intracellular regions of the receptors enable additional layers of signaling that help in the transduction of signals intracellularly. Additionally, symbiosis receptor-like kinase (SYMRK) containing the LRR motif acts as a co-receptor with Nod factors receptors (LysM-RLK). Cleavage of the malectin-like domain from the SYMRK ectodomain is a mechanism for controlling SYMRK stability. Overall, this review has discussed different aspects of legume receptors that are critical to the perception of signals from rhizobia and their subsequent role in creating the mutualistic relationship necessary for nitrogen fixation. Additionally, it has been discussed how crucial it is to extrapolate the knowledge gained from model legumes to crop legumes such as chickpea and common bean to better understand the mechanism underlying nodule formation in crop legumes. Future directions have also been proposed in this regard.


Subject(s)
Fabaceae , Rhizobium , Nitrogen Fixation , Plant Proteins/metabolism , Leucine , Symbiosis/physiology , Fabaceae/metabolism , Plants/metabolism , Rhizobium/physiology , Root Nodules, Plant/metabolism
9.
New Phytol ; 238(2): 798-816, 2023 04.
Article in English | MEDLINE | ID: mdl-36683398

ABSTRACT

Flavonoids are important plant pigments and defense compounds; understanding the transcriptional regulation of flavonoid biosynthesis may enable engineering crops with improved nutrition and stress tolerance. Here, we characterize R2R3-MYB domain subgroup 7 transcription factor CaMYB39, which regulates flavonol biosynthesis primarily in chickpea trichomes. CaMYB39 overexpression in chickpea was accompanied by a change in flux availability for the phenylpropanoid pathway, particularly flavonol biosynthesis. Lines overexpressing CaMYB39 showed higher isoflavonoid levels, suggesting its role in regulating isoflavonoid pathway. CaMYB39 transactivates the transcription of early flavonoid biosynthetic genes (EBG). FLAVONOL SYNTHASE2, an EBG, encodes an enzyme with higher substrate specificity for dihydrokaempferol than other dihydroflavonols explaining the preferential accumulation of kaempferol derivatives as prominent flavonols in chickpea. Interestingly, CaMYB39 overexpression increased trichome density and enhanced the accumulation of diverse flavonol derivatives in trichome-rich tissues. Moreover, CaMYB39 overexpression reduced reactive oxygen species levels and induced defense gene expression which aids in partially blocking the penetration efficiency of the fungal pathogen, Ascochyta rabiei, resulting in lesser symptoms, thus establishing its role against deadly Ascochyta blight (AB) disease. Overall, our study reports an instance where R2R3-MYB-SG7 member, CaMYB39, besides regulating flavonol biosynthesis, modulates diverse pathways like general phenylpropanoid, isoflavonoid, trichome density, and defense against necrotrophic fungal infection in chickpea.


Subject(s)
Cicer , Transcription Factors , Transcription Factors/metabolism , Cicer/genetics , Cicer/metabolism , Flavonoids , Flavonols , Gene Expression Regulation, Plant , Plant Proteins/metabolism
10.
3 Biotech ; 13(2): 49, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36685317

ABSTRACT

Ascochyta blight disease is a devastating disease caused by the fungal pathogen Ascochyta rabiei that threatens chickpea production around the globe. Endocytic mechanism has a significant role in fungal growth and virulence. The underlying biology of biogenesis of central component of endocytosis viz Rab5 vesicles, is not completely understood. The involvement of F-BAR domain containing protein (ArF-BAR) in various cellular processes that collectively make ArF-BAR as an important virulence determinant. Here, we report that ArF-BAR is involved in biogenesis and motility of early endosome. In the absence of ArF-BAR gene (Δarf-bar), fungal mutants exhibited reduced number of EGFP coated ArRab5 vesicles, along with the considerable reduction in their dynamics. Here, we show that ArF-BAR interacts with clathrin light chain (ArCLC), specifically with its F-BAR domain. These findings suggests the novel role of ArF-BAR in biogenesis and dynamics of early endosome. Additionally, ArF-BAR is involved in clathrin-mediated mechanism of endocytosis which is required for host infection and disease development. Identification of this pathway offers new impending targets for disease intervention in plants. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-022-03451-5.

11.
Plant Cell ; 35(3): 1134-1159, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36585808

ABSTRACT

Fungal pathogens deploy a barrage of secreted effectors to subvert host immunity, often by evading, disrupting, or altering key components of transcription, defense signaling, and metabolic pathways. However, the underlying mechanisms of effectors and their host targets are largely unexplored in necrotrophic fungal pathogens. Here, we describe the effector protein Ascochyta rabiei PEXEL-like Effector Candidate 25 (ArPEC25), which is secreted by the necrotroph A. rabiei, the causal agent of Ascochyta blight disease in chickpea (Cicer arietinum), and is indispensable for virulence. After entering host cells, ArPEC25 localizes to the nucleus and targets the host LIM transcription factor CaßLIM1a. CaßLIM1a is a transcriptional regulator of CaPAL1, which encodes phenylalanine ammonia lyase (PAL), the regulatory, gatekeeping enzyme of the phenylpropanoid pathway. ArPEC25 inhibits the transactivation of CaßLIM1a by interfering with its DNA-binding ability, resulting in negative regulation of the phenylpropanoid pathway and decreased levels of intermediates of lignin biosynthesis, thereby suppressing lignin production. Our findings illustrate the role of fungal effectors in enhancing virulence by targeting a key defense pathway that leads to the biosynthesis of various secondary metabolites and antifungal compounds. This study provides a template for the study of less explored necrotrophic effectors and their host target functions.


Subject(s)
Ascomycota , Cicer , Transcription Factors , Ascomycota/genetics , Ascomycota/metabolism , Cicer/genetics , Cicer/metabolism , Cicer/microbiology , Lignin/metabolism , Plant Diseases/genetics , Plant Diseases/microbiology , Transcription Factors/genetics , Transcription Factors/metabolism
12.
J Ethnopharmacol ; 302(Pt A): 115849, 2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36306933

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The present work is based on a wide spectrum of evidences available from scientific literature which reflects nutritional and medicinal values of natural products such as plants and their extracts. Moringa oleifera is one such popular plant species amidst indigenous tribal communities which is frequently used to treat ailments such as piles, sore throat, eye and ear infections and even poisonous bites of tropical fauna such as insects or snakes. Furthermore decoction of leaf and bark was used to cure fever and cough. Evidences further reveal that Moringa oleifera L. (Family Moringaceae), is widely distributed not only over the Indian sub-continent, but also over Philippines, Central America, Saudi Arabia and the Caribbean Islands and have been traditionally used to treat cancers since ancient times. However, therapeutic effects of Moringa oleifera on Non-Hodgkin Lymphoma (NHL) are yet to be established. AIM OF THE STUDY: The study aims to investigate the anti-cancer effects of Moringa oleifera leaf extract against murine NHL Non-Hodgkin cells in vitro and in vivo. MATERIAL AND METHODS: The pharmacologically active compounds of Moringa oleifera leaf extract were identified by GC-HRMS analysis. Tests of Moringa oleifera leaf extract's cytotoxicity against DL cells were carried out using the MTT assay. Chromatin condensation along with other morphological alterations were visualized through Fluorescence microscopy. Changes in the mitochondrial membrane potential (ΔΨm), the cell cycle, and apoptosis were analysed through flow cytometer. We tried to identify proteins involved in apoptosis and cell cycle through Western blotting using BALB/c mice as a model organism. RESULTS: GC-HRMS study revealed that a methanol based leaf extract of Moringa oleifera (MOML) comprises of a variety of bioactive chemicals. Our results indicate that MOML successfully reduced the proliferation of DL cells by lowering ΔΨm, changing overall cell morphology. DL cells treated with MOML showed arrested cell cycle at the G2/M phase and substantially up-regulated the expression of p53 and p21. Elevated levels of Bax, Cyt-c, and Caspase-3 and lowered expression levels of Bcl-2 protein suggested induction of apoptosis. Mechanistically, the anticancer efficacy of MOML is attributed to MEK/ERK-mediated pathway inactivation in DL cells. It is also interesting to note that MOML-mediated inhibition of DL growth was accompanied by apoptosis induction and improvement in hematological parameters in DL-bearing mice. CONCLUSION: Our finding suggested that MOML induces apoptosis and abrogates the growth of Dalton's lymphoma both in vitro and in vivo.


Subject(s)
Lymphoma , Moringa oleifera , Mice , Animals , Moringa oleifera/chemistry , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Cell Cycle Checkpoints , Apoptosis , Lymphoma/drug therapy , Plant Leaves
13.
J Fungi (Basel) ; 8(12)2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36547579

ABSTRACT

The corm rot of saffron caused by Fusarium oxysporum (Fox) has been reported to be the most destructive fungal disease of the herb globally. The pathogen, Fusarium oxysporum R1 (Fox R1) isolated by our group from Kashmir, India, was found to be different from Fusarium oxysporum f.sp. gladioli commonly reported corm rot agent of saffron. In the present study, Fox R1 was further characterized using housekeeping genes and pathogenicity tests, as Fusarium oxysporum R1 f.sp. iridacearum race 4. Though Fox R1 invaded the saffron plant through both corm and roots, the corm was found to be the preferred site of infection. In addition, the route of pathogen movement wastracked by monitoring visual symptoms, semi-quantitative PCR, quantitative-PCR (q-PCR), real-time imaging of egfp-tagged Fusarium oxysporum R1, and Fox R1 load quantification. This study is the first study of its kind on the bidirectional pathogenesis from corm to roots and vice-versa, as the literature only reports unidirectional upward movement from roots to other parts of the plant. In addition, the colonization pattern of Fox R1 in saffron corms and roots was studied. The present study involved a systematic elucidation of the mode and mechanism of pathogenesis in the saffron Fusarium oxysporum strain R1 pathosystem.

14.
World J Microbiol Biotechnol ; 39(2): 52, 2022 Dec 24.
Article in English | MEDLINE | ID: mdl-36564678

ABSTRACT

This work embodies the development of a real time loop mediated isothermal amplification (RealAmp) assay for the rapid detection of the cryptic tea phytopathogen, Exobasidium vexans, the causal organism of blister blight disease. Due to the widespread popularity of tea as a beverage and the associated agro-economy, the rapid detection and management of the fast-spreading blister blight disease have been a longstanding necessity. Loop-mediated isothermal amplification (LAMP) primers were designed targeting the E. vexans ITS rDNA region and the reaction temperature was optimized at 62 °C with a 60 min reaction time. Amplification of the E. vexans isolates in the initial LAMP reactions was confirmed by both agarose gel electrophoresis and SYBR Green I dye based colour change visualization. The specificity of the LAMP primers for E. vexans was validated by negative testing of seven different phytopathogenic test fungi using LAMP and RealAmp assay. The positive findings in RealAmp assay for E. vexans strain were corroborated via detecting fluorescence signals in real-time. Further, the LAMP assays performed with gDNA isolated from infected tea leaves revealed positive amplification for the presence of E. vexans. The results demonstrate that this rapid and precise RealAmp assay has the potential to be applied for field-based detection of E. vexans in real-time.


Subject(s)
Basidiomycota , Nucleic Acid Amplification Techniques , Nucleic Acid Amplification Techniques/methods , Basidiomycota/genetics , DNA Primers/genetics , Plant Diseases/microbiology , Tea , Sensitivity and Specificity
15.
Mol Plant Microbe Interact ; 35(11): 1034-1047, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35939621

ABSTRACT

Ascochyta blight (AB) caused by the filamentous fungus Ascochyta rabiei is a major threat to global chickpea production. The mechanisms underlying chickpea response to A. rabiei remain elusive to date. Here, we investigated the comparative transcriptional dynamics of AB-resistant and -susceptible chickpea genotypes upon A. rabiei infection, to understand the early host defense response. Our findings revealed that AB-resistant plants underwent rapid and extensive transcriptional reprogramming compared with a susceptible host. At the early stage (24 h postinoculation [hpi]), mainly cell-wall remodeling and secondary metabolite pathways were highly activated, while differentially expressed genes related to signaling components, such as protein kinases, transcription factors, and hormonal pathways, show a remarkable upsurge at 72 hpi, especially in the resistant genotype. Notably, our data suggest an imperative role of jasmonic acid, ethylene, and abscisic acid signaling in providing immunity against A. rabiei. Furthermore, gene co-expression networks and modules corroborated the importance of cell-wall remodeling, signal transduction, and phytohormone pathways. Hub genes such as MYB14, PRE6, and MADS-SOC1 discovered in these modules might be the master regulators governing chickpea immunity. Overall, we not only provide novel insights for comprehensive understanding of immune signaling components mediating AB resistance and susceptibility at early Cicer-Ascochyta interactions but, also, offer a valuable resource for developing AB-resistant chickpea. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Subject(s)
Cicer , Cicer/genetics , Cicer/microbiology , Transcriptome/genetics , Plant Diseases/microbiology
16.
Mol Plant Pathol ; 23(9): 1241-1261, 2022 09.
Article in English | MEDLINE | ID: mdl-35778851

ABSTRACT

The necrotrophic fungus Ascochyta rabiei causes Ascochyta blight (AB) disease in chickpea. A. rabiei infects all aerial parts of the plant, which results in severe yield loss. At present, AB disease occurs in most chickpea-growing countries. Globally increased incidences of A. rabiei infection and the emergence of new aggressive isolates directed the interest of researchers toward understanding the evolution of pathogenic determinants in this fungus. In this review, we summarize the molecular and genetic studies of the pathogen along with approaches that are helping in combating the disease. Possible areas of future research are also suggested. TAXONOMY: kingdom Mycota, phylum Ascomycota, class Dothideomycetes, subclass Coelomycetes, order Pleosporales, family Didymellaceae, genus Ascochyta, species rabiei. PRIMARY HOST: A. rabiei survives primarily on Cicer species. DISEASE SYMPTOMS: A. rabiei infects aboveground parts of the plant including leaves, petioles, stems, pods, and seeds. The disease symptoms first appear as watersoaked lesions on the leaves and stems, which turn brown or dark brown. Early symptoms include small circular necrotic lesions visible on the leaves and oval brown lesions on the stem. At later stages of infection, the lesions may girdle the stem and the region above the girdle falls off. The disease severity increases at the reproductive stage and rounded lesions with concentric rings, due to asexual structures called pycnidia, appear on leaves, stems, and pods. The infected pod becomes blighted and often results in shrivelled and infected seeds. DISEASE MANAGEMENT STRATEGIES: Crop failures may be avoided by judicious practices of integrated disease management based on the use of resistant or tolerant cultivars and growing chickpea in areas where conditions are least favourable for AB disease development. Use of healthy seeds free of A. rabiei, seed treatments with fungicides, and proper destruction of diseased stubbles can also reduce the fungal inoculum load. Crop rotation with nonhost crops is critical for controlling the disease. Planting moderately resistant cultivars and prudent application of fungicides is also a way to combat AB disease. However, the scarcity of AB-resistant accessions and the continuous evolution of the pathogen challenges the disease management process. USEFUL WEBSITES: https://www.ndsu.edu/pubweb/pulse-info/resourcespdf/Ascochyta%20blight%20of%20chickpea.pdf https://saskpulse.com/files/newsletters/180531_ascochyta_in_chickpeas-compressed.pdf http://www.pulseaus.com.au/growing-pulses/bmp/chickpea/ascochyta-blight http://agriculture.vic.gov.au/agriculture/pests-diseases-and-weeds/plant-diseases/grains-pulses-and-cereals/ascochyta-blight-of-chickpea http://www.croppro.com.au/crop_disease_manual/ch05s02.php https://www.northernpulse.com/uploads/resources/722/handout-chickpeaascochyta-nov13-2011.pdf http://oar.icrisat.org/184/1/24_2010_IB_no_82_Host_Plant https://www.crop.bayer.com.au/find-crop-solutions/by-pest/diseases/ascochyta-blight.


Subject(s)
Ascomycota , Cicer , Fungicides, Industrial , Ascomycota/genetics , Cicer/genetics , Cicer/microbiology , Plant Diseases/microbiology
17.
Front Biosci (Landmark Ed) ; 27(4): 120, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35468679

ABSTRACT

INTRODUCTION: Natural phytochemicals are considered safe to use as therapeutic agents. There is a growing trend toward exploring anticancer effects of crude algal extracts or their active ingredients. Euglena tuba, a microalga, contains excellent antioxidant potential. However, the anticancer property of E. tuba has not been explored. This study investigates the chemical profiling as well as antitumor property of methanolic extract of E. tuba (ETME) against Dalton's lymphoma (DL) cells. MATERIALS AND METHODS: E. tuba, procured from northern part of India, was extracted in 70% methanol, dried at room temperature, and stored at -20 ∘C for future use. A freshly prepared aqueous solution of ETME of different concentrations was employed into each experiment. The ETME mediated anti-tumor response in Dalton's lymphoma was evaluated in the inbred populations of BALB/c (H2d) strain of mice of either sex at 8-12 weeks of age. The cytotoxicity of ETME in cancer cells, effects on morphology of cell and nucleus, alteration in the mitochondrial membrane potential, and level of expression of proapoptotic proteins (Bcl-2, cyt C, Bax and p53) were done using known procedures. RESULTS: The ETME contained high content of total alkaloids (96.02 ± 3.30 mg/100 mg), flavonoids (15.77 ± 2.38 mg/100 mg), carbohydrate (12.71 ± 0.59 mg/100 mg), ascorbic acid (12.48 ± 2.59 mg/100 mg), and phenolics (0.94 ± 0.05 mg/100 mg). Gas chromatography-mass spectrometry (GC-MS) analysis indicated the presence of 23 phytochemicals with known anticancer properties. DL cells treated with ETME exhibited significant and concentration dependent cytotoxicity. Florescent microscopy and flow cytometry of ETME treated DL cells indicated significant repair in cellular morphology and decreased mitochondrial potential, respectively. Western blot analysis displayed up-regulation of proapoptotic proteins (Bax, Cyt-c, p53) and down regulation of anti-apoptotic protein (Bcl2) in DL cells treated with ETME. CONCLUSIONS: The findings of this study clearly indicated that the anticancer property of ETME was mediated via reduction in mitochondrial potential and induction of apoptotic mechanism. Further studies are warranted to explore the anticancer activities of active ingredients present in this microalga of pharmaceutical importance.


Subject(s)
Euglena , Microalgae , Animals , Methanol , Mice , Phytochemicals/pharmacology , Tubulin , Tumor Suppressor Protein p53 , bcl-2-Associated X Protein
18.
ACS Omega ; 7(15): 13000-13009, 2022 Apr 19.
Article in English | MEDLINE | ID: mdl-35474812

ABSTRACT

The insertion of selenium was achieved in the form of mono-selenides and di-selenides for the preparation of novel bis-heterocyclic compounds. This method is more general and provides scaffold diversity with high yields of products. The concentration-dependent mono- and di-selenylation reaction selectivity was achieved using SeO2 as an efficient selenylating reagent.

19.
Trends Plant Sci ; 27(6): 513-515, 2022 06.
Article in English | MEDLINE | ID: mdl-35279364

ABSTRACT

Stomata offer an effortless opportunity for pathogens to enter host plants and exploit that resource. Upon pathogen attack, stomatal closure is a commonly observed response to prevent microbial invasion. A recent study by Zou et al. shows that stomatal closure following exposure to microbe-associated molecular patterns (MAMPs) is mediated by altered actin dynamics in an MPK3/6 phosphorylation- and VLN3-dependent manner.


Subject(s)
Arabidopsis Proteins , Plant Stomata , Arabidopsis Proteins/metabolism , Phosphorylation , Plant Stomata/physiology
20.
FEBS J ; 289(18): 5531-5550, 2022 09.
Article in English | MEDLINE | ID: mdl-35313092

ABSTRACT

Old yellow enzymes (OYEs) play a critical role in antioxidation, detoxification and ergot alkaloid biosynthesis processes in various organisms. The yeast- and bacteria-like OYEs have been structurally characterized earlier, however, filamentous fungal pathogens possess a novel OYE class, that is, class III, whose biochemical and structural intricacies remain unexplored to date. Here, we present the 1.6 Å X-ray structure of a class III member, OYE 6 from necrotrophic fungus Ascochyta rabiei (ArOYE6), in flavin mononucleotide (FMN)-bound form (PDB ID-7FEV) and provide mechanistic insights into their catalytic capability. We demonstrate that ArOYE6 exists as a monomer in solution, forms (ß/α)8 barrel structure harbouring non-covalently bound FMN at cofactor binding site, and utilizes reduced nicotinamide adenine dinucleotide phosphate as its preferred reductant. The large hydrophobic cavity situated above FMN, specifically accommodates 12-oxo-phytodienoic acid and N-ethylmaleimide substrates as observed in ArOYE6-FMN-substrate ternary complex models. Site-directed mutations in the conserved catalytic (His196, His199 and Tyr201) and FMN-binding (Lys249 and Arg348) residues render the enzyme inactive. Intriguingly, the ArOYE6 structure contains a novel C-terminus (369-445 residues) made of three α-helices, which stabilizes the FMN binding pocket as its mutation/truncation lead to complete loss of FMN binding. Moreover, the loss of the extended C-terminus does not alter the monomeric nature of ArOYE6. In this study, for the first time, we provide the structural and biochemical insights for a fungi-specific class III OYE homologue and dissect the oxidoreductase mechanism. Our findings hold broad biological significance during host-fungus interactions owing to the conservation of this class among pathogenic fungi, and would have potential implications in the pharmacochemical industry.


Subject(s)
Ergot Alkaloids , NADPH Dehydrogenase , Crystallography, X-Ray , Ethylmaleimide , Flavin Mononucleotide/chemistry , NADP , NADPH Dehydrogenase/chemistry , Oxidoreductases/metabolism , Reducing Agents
SELECTION OF CITATIONS
SEARCH DETAIL
...