Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 114
Filter
1.
Nutrients ; 16(6)2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38542701

ABSTRACT

The composition and diversity of gut microbiota significantly influence the immune system and are linked to various diseases, including inflammatory and allergy disorders. While considerable research has focused on exploring single bacterial species or consortia, the optimal strategies for microbiota-based therapeutics remain underexplored. Specifically, the comparative effectiveness of bacterial consortia versus individual species warrants further investigation. In our study, we assessed the impact of the bacterial consortium MPRO, comprising Lactiplantibacillus plantarum HY7712, Bifidobacterium animalis ssp. lactis HY8002, and Lacticaseibacillus casei HY2782, in comparison to its individual components. The administration of MPRO demonstrated enhanced therapeutic efficacy in experimental models of atopic dermatitis and inflammatory colitis when compared to single strains. MPRO exhibited the ability to dampen inflammatory responses and alter the gut microbial landscape significantly. Notably, MPRO administration led to an increase in intestinal CD103+CD11b+ dendritic cells, promoting the induction of regulatory T cells and the robust suppression of inflammation in experimental disease settings. Our findings advocate the preference for bacterial consortia over single strains in the treatment of inflammatory disorders, carrying potential clinical relevance.


Subject(s)
Bifidobacterium animalis , Dermatitis, Atopic , Probiotics , Humans , Inflammation , Probiotics/therapeutic use , Probiotics/pharmacology , Bifidobacterium animalis/physiology , Bacteria , Anti-Inflammatory Agents/pharmacology
2.
J Chem Inf Model ; 64(6): 2058-2067, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38457234

ABSTRACT

The biochemical basis for substrate dependences in apparent inhibition constant values (Ki) remains unknown. Our study aims to elucidate plausible structural determinants underpinning these observations. In vitro steady-state inhibition assays conducted using human recombinant CYP3A4 enzyme and testosterone substrate revealed that fibroblast growth factor receptor (FGFR) inhibitors erdafitinib and pemigatinib noncompetitively inhibited CYP3A4 with apparent Ki values of 10.2 ± 1.1 and 3.3 ± 0.9 µM, respectively. However, when rivaroxaban was adopted as the probe substrate, there were 2.0- and 3.2-fold decreases in its apparent Ki values. To glean mechanistic insights into this phenomenon, erdafitinib and pemigatinib were docked to allosteric sites in CYP3A4. Subsequently, molecular dynamics (MD) simulations of apo- and holo-CYP3A4 were conducted to investigate the structural changes induced. Comparative structural analyses of representative MD frames extracted by hierarchical clustering revealed that the allosteric inhibition of CYP3A4 by erdafitinib and pemigatinib did not substantially modulate its active site characteristics. In contrast, we discovered that allosteric binding of the FGFR inhibitors reduces the structural flexibility of the F-F' loop region, an important gating mechanism to regulate access of the substrate to the catalytic heme. We surmised that the increased rigidity of the F-F' loop engenders a more constrained entrance to the CYP3A4 active site, which in turn impedes access to the larger rivaroxaban molecule to a greater extent than testosterone and culminates in more potent inhibition of its CYP3A4-mediated metabolism. Our findings suggest a potential mechanism to rationalize probe substrate dependencies in Ki arising from the allosteric noncompetitive inhibition of CYP3A4.


Subject(s)
Cytochrome P-450 CYP3A , Rivaroxaban , Humans , Cytochrome P-450 CYP3A/metabolism , Allosteric Site , Molecular Dynamics Simulation , Testosterone/metabolism
3.
Environ Sci Pollut Res Int ; 30(40): 93054-93069, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37498430

ABSTRACT

The pace of water contamination is increasing daily due to expanding industrialisation. Finding a feasible solution for effectively remediating various organic and inorganic pollutants from large water bodies remains challenging. However, a nano-engineered advanced hybrid material could provide a practical solution for the efficient removal of such pollutants. This work has reported the development of a highly efficient and reusable absorbent comprising a porous polyurethane (PU) and reduced graphene oxide (rGO) nanosheets (rGOPU) for the removal of different organic oils (industrial oil, engine oil and mustard oil), dyes (MB, MO, RB, EY and MV) and heavy metals (Pb(II), Cr(VI), Cd(II), Co(II) and As(V)). The structure, morphology and properties of the rGOPU hybrid absorbents were analysed by using Raman spectroscopy, field emission scanning electron microscopy (FESEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA) and Brunner-Emitte-Teller (BET) analysis. The rGOPU possessed both superhydrophobicity and superoleophilicity with water and oil contact angles of about 164° and 0°, respectively. The prepared rGOPU has demonstrated an excellent oil-water separation ability (up to 99%), heavy metals removal efficiency (more than 75%), toxic dye adsorption (more than 55%), excellent recyclability (> 500 times for oils), extraordinary mechanical stability (90% compressible for > 1000 cycles) and high recoverability. This work presents the first demonstration of rGOPU's multifunctional absorbent capacity in large-scale wastewater treatment for effectively removing a wide variety of organic and inorganic contaminants.


Subject(s)
Graphite , Metals, Heavy , Water Pollutants, Chemical , Water Pollutants , Water/chemistry , Graphite/chemistry , Water Pollutants, Chemical/chemistry , Adsorption , Kinetics , Spectroscopy, Fourier Transform Infrared
4.
3 Biotech ; 13(7): 244, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37346389

ABSTRACT

A simple, rapid, and sensitive electrochemical biosensor based on a screen-printed carbon electrode (SPCE) was developed for onsite detection of E. coli in real time. This work analyzed the effect of aptamer conjugation and PBS buffer solution on the colloidal stability of the silver nanoparticles (AgNPs). Aggregations of the AgNPs after aptamer conjugation in PBS buffer were observed from the particle size distribution analysis. The AgNP-aptamer conjugation and its affinity towards E. coli (DH5α) were confirmed by UV-visible spectrophotometry, which showed a linear increment in the absorption with increasing E.coli concentration. The screen-printed carbon electrodes were modified by drop-casting of AgNPs, which were used as an effective immobilization platform for E. coli-specific aptamers. The modified electrode's surface modification and redox behavior were characterized using cyclic voltammetry. Finally, E. coli was detected using differential pulse voltammetry with an optimized incubation time of 15 min. The developed biosensors showed a linear decrease in current intensity with an increase in the concentration of E. coli. The biosensor had a relative standard deviation (RSD) of 6.91% (n = 3), which showed good reproducibility. The developed biosensors are highly sensitive and have a limit of detection (LOD) as low as 150 CFU/ml. The biosensor showed good selectivity for E.coli coli when comparing the signal response obtained for bacteria other than E.coli. Also, the biosensor was found stable for four weeks at room temperature and showed high recoveries from 95.27% to 107% during the tap water sensitivity validation.

5.
Ultrasonics ; 133: 107023, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37182317

ABSTRACT

This paper is concerned with numerical modeling for nondestructive imaging of defects in solids via standing waves excited by a periodic sinewave signal. The stationary solution, purely sinusoidal in an intact sample, contains higher harmonics when damage is present. These harmonics are generated by contact acoustic nonlinearity and form their own standing waves whose intensity maximum usually indicates the position of damage, in a way similar to resonant vibrometry experiments. The key point of the developed numerical tool that describes those wave phenomena is a model of planar damage (crack, delamination) considered here as an inner contact with rough surfaces and friction. The corresponding boundary conditions are given by the previously developed contact model based on the Method of Memory Diagrams (MMD) capable of automating the account for hysteretic frictional effects. Combination of the MMD for boundary conditions and a finite element formulation for waves in a volume (MMD-FEM model) provides a complete description which represents a numerical code applied here for nonlinear standing waves simulations. We present a number of examples obtained for idealized 2D geometry and reveal conditions in which both position and extent of damage are clearly seen as well as cases where only partial detection is possible.

6.
Environ Pollut ; 328: 121201, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-36738883

ABSTRACT

Multicomponent wastewater treatment utilising simple and cost-effective materials and methods is an important research topic. This study has reported the fabrication and utilisation of graphene oxide (GO) embedded granular Polyurethane (PU) (GOPU) adsorbent for the treatment of lead ion (Lead ion (Pb(II)), Methylene blue (MB), and E. coli. PU granules were wrapped with GO flakes to improve hydrophilicity, interaction with polluted water, cation-exchange reaction, and binding of pollutants on its surface. Synthesised GOPU granules were characterised by X-Ray Diffraction (XRD), Raman, Fourier transform infrared (FTIR) spectroscopy, and Scanning electron microscopy (SEM) analysis to ensure the successful synthesis of GO and fabrication of GOPU granules. Further, batch and continuous adsorption processes were studied in different operating conditions to evaluate the performance of GOPU granules in practical applications. The kinetic and isotherm analyses revealed that the adsorption of Lead (Pb(II)) ion and Methylene Blue (MB) dye followed the Freundlich and Langmuir isotherm models, respectively, and they showed good agreement with the Pseudo-second-order kinetic model. The adsorption capacities of GOPU granules for the elimination of Pb(II) and MB dye were about 842 mg/g and 899 mg/g, respectively. Additionally, investigations into the fixed bed column revealed that the adsorption column performed best at a flow rate of 5 mL/min and a bed height of 6 cm. Pb(II) adsorption had a bed uptake capacity (qbed) of 88 mg/g and percentage removal efficiency (%R) of 76%. Similarly, MB adsorption had a bed uptake capacity of 202 mg/g and a percentage removal efficiency of 71%. A systematic invention on antibacterial activity toward E. coli showed that The GOPU granules have a removal efficiency of about 100% at an exposure of 24 h. These findings indicated the possible use of GOPU granules as promising adsorbents for various water pollutants.


Subject(s)
Graphite , Water Pollutants, Chemical , Water Pollutants , Lead , Polyurethanes , Methylene Blue/chemistry , Escherichia coli , Graphite/chemistry , Water Pollutants, Chemical/analysis , Adsorption , Kinetics , Spectroscopy, Fourier Transform Infrared , Hydrogen-Ion Concentration
7.
BMJ ; 380: 385, 2023 02 23.
Article in English | MEDLINE | ID: mdl-36822647

Subject(s)
Masculinity , Men , Male , Humans , Health Status
8.
Soc Netw Anal Min ; 13(1): 12, 2023.
Article in English | MEDLINE | ID: mdl-36591558

ABSTRACT

The world witnessed the emergence of a deadly virus in December 2019, later named COVID-19. The virus was found to be highly contagious, and so people across the world were highly prone to be affected by the virus. Being a virus-borne disease, developing a vaccine was one of the most promising remedies. Thus, research organizations across the globe started working on developing the vaccine. However, it was later found by many researchers that a large number of people were hesitant to receive the vaccine. This paper aims to study the acceptance and hesitancy levels of people in India and compares them with the acceptance and hesitancy levels of people from the UK, the USA, and the rest of the world by analyzing their tweets on Twitter. For this study, 2,98,452 tweets were fetched from January 2020 to March 2022 from Twitter, and 1,84,720 tweets from 1,22,960 unique users were selected based on their country of origin. Machine learning based Sentiment analysis is then used to evaluate and analyze the tweets. The paper also proposes an NLP-based algorithm to perform opinion mining on Twitter data. The study found the public sentiment of the Indian population to be 63% positive, 28% neutral, and 9% negative. While the worldwide sentiment distribution is 45% positive, 34% neutral, and 21% negative, the USA has 42% positive, 34% neutral, and 23% negative and the UK has 50% positive, 29% neutral, and 21% negative. Also, sentiment analysis for individual vaccines in Indian context resulted in "Covaxin" with the highest positive sentiment at 43% followed by "Covishield" at 36%. The outcome of this work yields an insight into the public perception of the COVID-19 vaccine and thus can be used to formulate policies for existing and future vaccine campaigns. This study becomes more relevant as it is the consolidated opinion of Indian people, which is versatile in nature.

9.
Environ Sci Pollut Res Int ; 29(57): 86485-86498, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35708809

ABSTRACT

This study proposed a two-step method involving hydrothermal and electrostatic self-assembly processes for synthesising an amine-functionalised magnetic ligand graphene oxide-based nanocomposite (EDTA@Fe3O4@GO). The amine groups were successfully attached to the surface of iron (II, III) oxide (Fe3O4), which were embedded on the surface of graphene oxide (GO) (Fe3O4@GO). This EDTA@ Fe3O4@GO nanocomposite was used as a chelating agent to bind the toxic heavy metal ions. EDTA@Fe3O4@GO demonstrated the synergistic effect between the large surface area and magnetic behaviour of Fe3O4@GO and the chelating effect of EDTA, and it showed higher efficiency than the individual GO and Fe3O4. The possible structural and compositional characteristics were proposed based on Fourier transform infrared spectra (FTIR), X-ray diffraction (XRD), scanning electron microscope (SEM), Brunauer-Emmett-Teller (BET) and Raman spectroscopy analysis. The outcomes revealed the mechanism behind the excellent As(V) adsorption onto EDTA@Fe3O4@GO. The adsorption process was studied by fitting the experimental data obtained into various kinetic and isotherm models. The pseudo-second-order (PSO) kinetic model and the Freundlich isotherm model (FIM) were found to be the best fit models for the removal of As(V) by EDTA@Fe3O4@GO. EDTA@Fe3O4@GO has the utmost adsorption capacity of 178.4 mg/g. Furthermore, the EDTA@Fe3O4@GO nanocomposite is reusable, and it showed excellent adsorption capacity up to 5 cycles. This study has provided insight into the potential of EDTA@Fe3O4@GO and its applications in large-scale wastewater treatment.


Subject(s)
Graphite , Magnetite Nanoparticles , Water Pollutants, Chemical , Edetic Acid , Amines , Water Pollutants, Chemical/analysis , Graphite/chemistry , Adsorption , Kinetics , Spectroscopy, Fourier Transform Infrared
10.
Econ Polit (Bologna) ; 39(1): 55-73, 2022.
Article in English | MEDLINE | ID: mdl-35422585

ABSTRACT

Sex and gender matter to health outcomes, but despite repeated commitments to sex-disaggregate data in health policies and programmes, a persistent and substantial absence of such data remains especially in lower-income countries. This represents a missed opportunity for monitoring and identifying gender-responsive, evidence-informed solutions to address a key driver of the pandemic. In this paper we review the availability of national sex-disaggregated surveillance data on COVID-19 and examine trends on the testing-to-outcome pathway. We further analyse the availability of data according to the economic status of the country and investigate the determinants of sex differences, including the national gender inequality status (according to a global index) in each country. Results are drawn from 18 months of global data collection from over 200 countries. We find differences in COVID-19 prevention behaviours and illness outcomes by sex, with lower uptake of vaccination and testing plus an elevated risk of severe disease and death among men. Supporting and maintaining the collection, collation, interpretation and presentation of sex-disaggregated data requires commitment and resources at subnational, national and global levels, but provides an opportunity for identifying and taking gender-responsive action on health inequities. As a first step the global health community should recognise, value and support the importance of sex-disaggregated data for identifying and tackling an inequitable pandemic.

11.
Drug Metab Dispos ; 50(5): 529-540, 2022 05.
Article in English | MEDLINE | ID: mdl-35153194

ABSTRACT

We recently established the mechanism-based inactivation (MBI) of cytochrome P450 3A (CYP3A) by the fibroblast growth factor receptor (FGFR) inhibitors erdafitinib and infigratinib. Serendipitously, our preliminary data have also revealed that pemigatinib (PEM), another clinically approved FGFR1-3 inhibitor, similarly elicited time-dependent inhibition of CYP3A. This was rather unexpected, as it was previously purported that PEM did not pose any metabolism-dependent liabilities due to the absence of glutathione-related conjugates in metabolic profiling experiments conducted in human liver microsomes. Here, we confirmed that PEM inhibited both CYP3A isoforms in a time-, concentration-, and cofactor-dependent manner consistent with MBI, with inactivator concentration at half-maximum rate constant, maximum inactivation rate constant, and partition ratio of 8.69 and 11.95 µM, 0.108 and 0.042 min-1, and approximately 44 and approximately 47 for CYP3A4 and CYP3A5, respectively. Although the rate of inactivation was diminished by coincubation with an alternative substrate or direct inhibitor of CYP3A, the inclusion of nucleophilic trapping agents afforded no such protection. Furthermore, the lack of catalytic activity recovery following dialysis and oxidation with potassium ferricyanide coupled with the absence of a spectrally resolvable peak in the Soret region collectively implied that the underlying mechanism of inactivation was not elicited via the formation of pseudo-irreversible metabolite-intermediate complexes. Finally, utilizing cyanide trapping and high-resolution mass spectrometry, we illuminated the direct and sequential oxidative bioactivation of PEM and its major O-desmethylated metabolite at its distal morpholine moiety to reactive iminium ion hard electrophilic species that could covalently inactivate CYP3A via MBI. SIGNIFICANCE STATEMENT: This study reports for the first time the covalent MBI of CYP3A by PEM and deciphered its bioactivation pathway involving the metabolic activation of PEM and its major O-desmethylated metabolite to reactive iminium ion intermediates. Following which, a unique covalent docking methodology was harnessed to unravel the structural and molecular determinants underpinning its inactivation. Findings from this study lay the foundation for future investigation of clinically relevant drug-drug interactions between PEM and concomitant substrates of CYP3A.


Subject(s)
Cytochrome P-450 CYP3A Inhibitors , Cytochrome P-450 CYP3A , Cytochrome P-450 CYP3A/metabolism , Cytochrome P-450 CYP3A Inhibitors/metabolism , Humans , Microsomes, Liver/metabolism , Morpholines , Pyrimidines , Pyrroles , Renal Dialysis
12.
Spat Demogr ; 9(2): 241-269, 2021.
Article in English | MEDLINE | ID: mdl-34722854

ABSTRACT

India is currently one of the most demographically diverse regions of the world. Fertility and mortality rates are known to show considerable variation at the level of regions, states and districts. Little is known however, about the spatial variations of the contraceptive usage-a critical variable that is relevant to fertility as well as health policy. This paper uses data from four national population-based household surveys conducted between 1998 and 2016 to explore district-level variations in the contraceptive prevalence rate. We find no clear evidence of convergence. The gap between the best and worst performing districts is more than 70 percent across the four rounds and does not diminish over time. We also find considerable evidence of spatial clustering across districts. Districts with high prevalence concentrate in Southern states and more recently, in the Northeast of the country. Our analysis suggests that female literacy and health care infrastructure are important correlates of spatial clusters. This suggests that investments in women's human capital and health-care infrastructure play a role in expanding women's opportunities to time their births.

13.
Curr Top Med Chem ; 21(31): 2800-2813, 2021.
Article in English | MEDLINE | ID: mdl-34477520

ABSTRACT

Breast cancer (BC) is the second most commonly diagnosed cancer in the world. BC develops due to dysregulation of transcriptional profiles, substantial interpatient variations, genetic mutations, and dysregulation of signaling pathways in breast cells. These events are regulated by many genes such as BRCA1/2, PTEN, TP53, mTOR, TERT, AKT, PI3K and others genes. Treatment options for BC remain a hurdle, which warrants a comprehensive understanding that establishes an interlinking connection between these genes in BC tumorigenesis. Consequently, there is an increasing demand for alternative treatment approaches and the design of more effective treatments. In this regard, it is crucial to build the corresponding transcriptional regulatory networks governing BC by using advanced genetic tools and techniques. In the past, several molecular editing technologies have been used to edit genes with several limitations. Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR Associated Protein 9 (CRISPR/Cas9) recently received wise attention due to its potential in biomedical and therapeutic applications. Here, we review the role of various molecular signalling pathways dysregulated in BC development such as PTEN/PI3K/AKT/mTOR as well as BRCA1/BRCA2/TP53/TERT and their interplay between the related gene networks in BC initiation, progression and development of resistance against available targeted therapeutic agents. Use of CRISPR/Cas9 gene-editing technology to generate BC gene-specific transgenic cell lines and animal models to decipher their role and interactions with other gene products has been employed successfully. Moreover, the significance of using CRISPR/Cas9 technology to develop early BC diagnostic tools and treatments is discussed here.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/therapy , CRISPR-Cas Systems/genetics , Gene Editing , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Oncogenes/genetics , Animals , Carcinogenesis/genetics , Humans
14.
Mol Pharmacol ; 100(3): 224-236, 2021 09.
Article in English | MEDLINE | ID: mdl-34210765

ABSTRACT

Mounting evidence has revealed that despite the high degree of sequence homology between cytochrome P450 3A isoforms (i.e., CYP3A4 and CYP3A5), they have the propensities to exhibit vastly different irreversible and reversible interactions with a single substrate. We have previously established that benzbromarone (BBR), a potent uricosuric agent used in the management of gout, irreversibly inhibits CYP3A4 via mechanism-based inactivation (MBI). However, it remains unelucidated if CYP3A5-its highly homologous counterpart-is susceptible to inactivation by BBR. Using three structurally distinct probe substrates, we consistently demonstrated that MBI was not elicited in CYP3A5 by BBR. Our in silico covalent docking models and molecular dynamics simulations suggested that disparities in the susceptibilities toward MBI could be attributed to the specific effects of BBR covalent adducts on the F-F' loop. Serendipitously, we also discovered that BBR reversibly activated CYP3A5-mediated rivaroxaban hydroxylation wherein apparent V max increased and K m decreased with increasing BBR concentration. Fitting data to the two-site model yielded interaction factors α and ß of 0.44 and 5.88, respectively, thereby confirming heterotropic activation of CYP3A5 by BBR. Furthermore, heteroactivation was suppressed by the CYP3A inhibitor ketoconazole in a concentration-dependent manner and decreased with increasing preincubation time, implying that activation was incited via binding of parent BBR molecule within the enzymatic active site. Finally, noncovalent docking revealed that CYP3A5 can more favorably accommodate both BBR and rivaroxaban in concert as compared with CYP3A4, which further substantiated our experimental observations. SIGNIFICANCE STATEMENT: Although it has been previously demonstrated that benzbromarone (BBR) inactivates CYP3A4, it remains uninterrogated whether it also elicits mechanism-based inactivation in CYP3A5, which shares ∼85% sequence similarity with CYP3A4. This study reported that BBR exhibited differential irreversible and reversible interactions with both CYP3A isoforms and further unraveled the molecular determinants underpinning their diverging interactions. These data offer important insight into differential kinetic behavior of CYP3A4 and CYP3A5, which potentially contributes to interindividual variabilities in drug disposition.


Subject(s)
Benzbromarone/chemistry , Cytochrome P-450 CYP3A Inhibitors/chemistry , Cytochrome P-450 CYP3A/chemistry , Benzbromarone/metabolism , Benzbromarone/pharmacology , Binding Sites , Catalytic Domain , Crystallography, X-Ray , Cytochrome P-450 CYP3A/metabolism , Cytochrome P-450 CYP3A Inhibitors/metabolism , Cytochrome P-450 CYP3A Inhibitors/pharmacology , Humans , Hydroxylation/drug effects , Hydroxylation/physiology , Inhibitory Concentration 50 , Midazolam/metabolism , Midazolam/pharmacology , Molecular Docking Simulation , Molecular Dynamics Simulation , Rivaroxaban/metabolism , Rivaroxaban/pharmacology , Testosterone/metabolism , Testosterone/pharmacology
15.
Front Chem ; 9: 689608, 2021.
Article in English | MEDLINE | ID: mdl-34268295

ABSTRACT

The lumen of the endoplasmic reticulum (ER) has resident proteins that are critical to perform the various tasks of the ER such as protein maturation and lipid metabolism. These ER resident proteins typically have a carboxy-terminal ER retention/retrieval sequence (ERS). The canonical ERS that promotes ER retrieval is Lys-Asp-Glu-Leu (KDEL) and when an ER resident protein moves from the ER to the Golgi, KDEL receptors (KDELRs) in the Golgi recognize the ERS and return the protein to the ER lumen. Depletion of ER calcium leads to the mass departure of ER resident proteins in a process termed exodosis, which is regulated by KDELRs. Here, by combining computational prediction with machine learning-based models and experimental validation, we identify carboxy tail sequences of ER resident proteins divergent from the canonical "KDEL" ERS. Using molecular modeling and simulations, we demonstrated that two representative non-canonical ERS can stably bind to the KDELR. Collectively, we developed a method to predict whether a carboxy-terminal sequence acts as a putative ERS that would undergo secretion in response to ER calcium depletion and interacts with the KDELRs. The interaction between the ERS and the KDELR extends beyond the final four carboxy terminal residues of the ERS. Identification of proteins that undergo exodosis will further our understanding of changes in ER proteostasis under physiological and pathological conditions where ER calcium is depleted.

16.
Drug Metab Dispos ; 49(9): 856-868, 2021 09.
Article in English | MEDLINE | ID: mdl-34326139

ABSTRACT

Infigratinib (INF) is a promising selective inhibitor of fibroblast growth factor receptors 1-3 that has recently been accorded both orphan drug designation and priority review status by the US Food and Drug Administration for the treatment of advanced cholangiocarcinoma. Its propensity to undergo bioactivation to electrophilic species was recently expounded upon. However, other than causing aberrant idiosyncratic toxicities, these reactive intermediates may elicit mechanism-based inactivation of cytochrome P450 enzymes. In this study, we investigated the interactions between INF and the most abundant hepatic CYP3A. Our findings revealed that, apart from being a potent noncompetitive reversible inhibitor of CYP3A4, INF inactivated CYP3A4 in a time-, concentration- and NADPH-dependent manner with inactivator concentration at half-maximum inactivation rate constant, maximum inactivation rate constant, and partition ratio of 4.17 µM, 0.068 minute-1, and 41, respectively, when rivaroxaban was employed as the probe substrate. Coincubation with testosterone (alternative CYP3A substrate) or ketoconazole (direct CYP3A inhibitor) attenuated the rate of inactivation, whereas the inclusion of glutathione and catalase did not confer such protection. The lack of enzyme activity recovery after dialysis for 4 hours and oxidation with potassium ferricyanide, coupled with the absence of the characteristic Soret peak signature collectively substantiated that inactivation of CYP3A4 by INF was not mediated by the formation of quasi-irreversible metabolite-intermediate complexes but rather through irreversible covalent adduction to the prosthetic heme and/or apoprotein. Finally, glutathione trapping and high-resolution mass spectrometry experimental results unraveled two plausible bioactivation mechanisms of INF arising from the generation of a p-benzoquinonediimine and epoxide reactive intermediate. SIGNIFICANCE STATEMENT: The potential of INF to cause MBI of CYP3A4 was unknown. This study reports the reversible noncompetitive inhibition and irreversible covalent MBI of CYP3A4 by INF and proposes two potential bioactivation pathways implicating p-benzoquinonediimine and epoxide reactive intermediates, following which a unique covalent docking methodology was harnessed to elucidate the structural and molecular determinants underscoring its inactivation. Findings from this study lay the groundwork for future investigation of clinically relevant drug-drug interactions between INF and concomitant substrates of CYP3A4.


Subject(s)
Cytochrome P-450 CYP3A Inhibitors/pharmacokinetics , NADP/metabolism , Phenylurea Compounds/pharmacokinetics , Pyrimidines/pharmacokinetics , Receptors, Fibroblast Growth Factor/antagonists & inhibitors , Antineoplastic Agents/pharmacokinetics , Cholangiocarcinoma/drug therapy , Drug Interactions , Humans , Inactivation, Metabolic , Metabolic Clearance Rate , Metabolic Networks and Pathways
17.
Nat Commun ; 12(1): 3611, 2021 06 14.
Article in English | MEDLINE | ID: mdl-34127673

ABSTRACT

Yeast is an integral part of mammalian microbiome, and like commensal bacteria, has the potential of being harnessed to influence immunity in clinical settings. However, functional specificities of yeast-derived immunoregulatory molecules remain elusive. Here we find that while under steady state, ß-1,3-glucan-containing polysaccharides potentiate pro-inflammatory properties, a relatively less abundant class of cell surface polysaccharides, dubbed mannan/ß-1,6-glucan-containing polysaccharides (MGCP), is capable of exerting potent anti-inflammatory effects to the immune system. MGCP, in contrast to previously identified microbial cell surface polysaccharides, through a Dectin1-Cox2 signaling axis in dendritic cells, facilitates regulatory T (Treg) cell induction from naïve T cells. Furthermore, through a TLR2-dependent mechanism, it restrains Th1 differentiation of effector T cells by suppressing IFN-γ expression. As a result, administration of MGCP display robust suppressive capacity towards experimental inflammatory disease models of colitis and experimental autoimmune encephalomyelitis (EAE) in mice, thereby highlighting its potential therapeutic utility against clinically relevant autoimmune diseases.


Subject(s)
Immunomodulation/drug effects , Immunomodulation/immunology , Polysaccharides/immunology , Saccharomyces cerevisiae/metabolism , beta-Glucans/immunology , Animals , CD4-Positive T-Lymphocytes , Cell Differentiation/drug effects , Colitis/immunology , Colitis/pathology , Cyclooxygenase 2 , Dendritic Cells/immunology , Encephalomyelitis, Autoimmune, Experimental , Glucans , Homeodomain Proteins/genetics , Immunity , Lectins, C-Type , Mannans , Mice , Mice, Inbred C57BL , Mice, Knockout , Polysaccharides/metabolism , Polysaccharides/pharmacology , Saccharomyces cerevisiae/genetics , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/immunology , Th1 Cells , Zymosan , beta-Glucans/metabolism , beta-Glucans/pharmacology
18.
Eur J Pharm Sci ; 164: 105889, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34044117

ABSTRACT

Extrahepatic CYP2J2 metabolism of arachidonic acid (AA) to bioactive regioisomeric epoxyeicosatrienoic acids (EETs) is implicated in both physiological and pathological conditions. Here, we aimed to characterize atypical substrate inhibition kinetics of this endogenous metabolic pathway and its reversible inhibition by xenobiotic inhibitors when AA is used as the physiologically-relevant substrate vis-à-vis conventional probe substrate astemizole (AST). As compared to typical Michaelis-Menten kinetics observed for AST, complete substrate inhibition was observed for CYP2J2 metabolism of AA to 14,15-EET whereby velocity of the reaction declined significantly at concentrations of AA above 20-30 µM with an estimated substrate inhibition constant (Ks) of 31 µM. In silico sequential docking of two AA substrates to orthosteric (OBS) and adjacent secondary binding sites (SBS) within a 3-dimensional homology model of CYP2J2 revealed favorable and comparable binding poses of glide-scores -3.1 and -3.8 respectively. Molecular dynamics (MD) simulations ascertained CYP2J2 conformational stability with dual AA substrate binding as time-dependent root mean squared deviation (RMSD) of protein Cα atoms and ligand heavy atoms stabilized to a plateau in all but one trajectory (n=6). The distance between heme-iron and ω6 (C14, C15) double bond of AA in OBS also increased from 7.5 ± 1.4 Å to 8.5 ± 1.8 Å when CYP2J2 was simulated with only AA in OBS versus the presence of AA in both OBS and SBS (p<0.001), supporting the observed in vitro substrate inhibition phenomenon. Poor correlation was observed between inhibitory constants (Ki) determined for a panel of nine competitive and mixed mode xenobiotic inhibitors against CYP2J2 metabolism of AA as compared to AST, whereby 4 out of 9 drugs had a greater than 5-fold difference between Ki values. Nonlinear Eadie-Hofstee plots illustrated that complete substrate inhibition of CYP2J2 by AA was not attenuated even at high concentrations of xenobiotic inhibitors which further corroborates that CYP2J2 may accommodate three or more ligands simultaneously. In light of the atypical kinetics, our results highlight the importance of using physiologically-relevant substrates in in vitro enzymatic inhibition assays for the characterization of xenobiotic-endobiotic interactions which is applicable to other complex endogenous metabolic pathways beyond CYP2J2 metabolism of AA to EETs. The accurate determination of Ki would further facilitate the association of xenobiotic-endobiotic interactions to observed therapeutic or toxic outcomes.


Subject(s)
Cytochrome P-450 Enzyme Inhibitors , Xenobiotics , Arachidonic Acid , Cytochrome P-450 Enzyme Inhibitors/pharmacology , Cytochrome P-450 Enzyme System/metabolism , Kinetics
19.
JBJS Case Connect ; 11(2)2021 04 19.
Article in English | MEDLINE | ID: mdl-33979830

ABSTRACT

CASE: A 20-year-old male athlete presented with 8 months of low back pain. Conservative management had been unsuccessful. He noted lumbar spine pain with extension, and imaging showed features of an L4-5 inferior articular facet tip fracture. The fragment was excised, he returned to college lacrosse and is without symptoms at the 9-month follow-up. CONCLUSION: In similar cases with facet fragments, we would recommend a full workup and attempt nonoperative therapy. If not improved and a diagnostic injection provides near-complete relief, then resection of the facet fragment can be discussed as a potentially effective and conservative surgical option.


Subject(s)
Fractures, Bone , Low Back Pain , Zygapophyseal Joint , Adult , Athletes , Back Pain , Fractures, Bone/complications , Humans , Low Back Pain/etiology , Male , Young Adult
20.
Curr Top Med Chem ; 21(10): 878-894, 2021.
Article in English | MEDLINE | ID: mdl-33739246

ABSTRACT

Brain function activity is regulated by several mechanisms of genetic and epigenetic factors such as histone modelling, DNA methylation, and non-coding RNA. Alterations in these regulatory mechanisms affect the normal development of neurons that causes Neuropsychiatric Disorders (ND). However, it is required to analyse the functional significance of neuropsychiatric disorders associated with a molecular mechanism to bring about therapeutic advances in early diagnosis and treatment of the patients. The CRISPR/Cas 9 (Clustered Regularly Interspaced Short Palindromic Repeats) genome editing tools have revolutionized multiple genome and epigenome manipulation targets the same time. This review discussed the possibilities of using CRISPR/Cas 9 tools during molecular mechanism in the ND as a therapeutic approach to overcome ND that is caused due to genetic and epigenetic abnormalities.


Subject(s)
CRISPR-Cas Systems/genetics , Epigenesis, Genetic/genetics , Mental Disorders/therapy , Neurocognitive Disorders/therapy , Animals , DNA Methylation , Gene Editing/methods , Gene Expression Regulation , Genetic Therapy/methods , Histones/genetics , Humans , Signal Transduction , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...