Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38496643

ABSTRACT

Obesity is a predisposition factor for breast cancer, suggesting a localized, reciprocal interaction between breast cancer cells and the surrounding mammary white adipose tissue. To investigate how breast cancer cells alter the composition and function of adipose tissue, we screened the secretomes of ten human breast cancer cell lines for the ability to modulate the differentiation of adipocyte stem and progenitor cells (ASPC). The screen identified a key adipogenic modulator, Zinc Alpha-2-Glycoprotein (ZAG/AZGP1), secreted by triple-negative breast cancer (TNBC) cells. TNBC-secreted ZAG inhibits adipogenesis and instead induces the expression of fibrotic genes. Accordingly, depletion of ZAG in TNBC cells attenuates fibrosis in white adipose tissue and inhibits tumor growth. Further, high expression of ZAG in TNBC patients, but not other clinical subtypes of breast cancer, is linked to poor prognosis. Our findings suggest a role of TNBC-secreted ZAG in promoting the transdifferentiation of ASPCs into cancer-associated fibroblasts to support tumorigenesis.

2.
bioRxiv ; 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38076943

ABSTRACT

Phagosome maturation arrest (PMA) imposed by Mycobacterium tuberculosis ( Mtb ) is a classic tool that helps Mtb evade macrophage anti-bacterial responses. The exclusion of RAB7, a small GTPase, from Mtb -phagosomes underscores PMA. Here we report an unexpected mechanism that triggers crosstalk between the mitochondrial quality control (MQC) and the phagosome maturation pathways that reverses the PMA. CRISPR-mediated p62/SQSTM1 depletion ( p62 KD ) blocks mitophagy flux without impacting mitochondrial quality. In p62 KD cells, Mtb growth and survival are diminished, mainly through witnessing an increasingly oxidative environment and increased lysosomal targeting. The lysosomal targeting of Mtb is facilitated by enhanced TOM20 + mitochondria-derived vesicles (MDVs) biogenesis, a key MQC mechanism. In p62 KD cells, TOM20 + -MDVs biogenesis is MIRO1/MIRO2-dependent and delivered to lysosomes for degradation in a RAB7-dependent manner. Upon infection in p62 KD cells, TOM20 + -MDVs get extensively targeted to Mtb -phagosomes, inadvertently facilitating RAB7 recruitment, PMA reversal and lysosomal targeting of Mtb . Triggering MQC collapse in p62 KD cells further diminishes Mtb survival signifying cooperation between redox- and lysosome-mediated mechanisms. The MQC-anti-bacterial pathway crosstalk could be exploited for host-directed anti-tuberculosis therapies.

3.
PLoS Biol ; 21(8): e3002231, 2023 08.
Article in English | MEDLINE | ID: mdl-37590294

ABSTRACT

Mycobacterium tuberculosis (Mtb) defends host-mediated killing by repressing the autophagolysosome machinery. For the first time, we report NCoR1 co-repressor as a crucial host factor, controlling Mtb growth in myeloid cells by regulating both autophagosome maturation and lysosome biogenesis. We found that the dynamic expression of NCoR1 is compromised in human peripheral blood mononuclear cells (PBMCs) during active Mtb infection, which is rescued upon prolonged anti-mycobacterial therapy. In addition, a loss of function in myeloid-specific NCoR1 considerably exacerbates the growth of M. tuberculosis in vitro in THP1 differentiated macrophages, ex vivo in bone marrow-derived macrophages (BMDMs), and in vivo in NCoR1MyeKO mice. We showed that NCoR1 depletion controls the AMPK-mTOR-TFEB signalling axis by fine-tuning cellular adenosine triphosphate (ATP) homeostasis, which in turn changes the expression of proteins involved in autophagy and lysosomal biogenesis. Moreover, we also showed that the treatment of NCoR1 depleted cells by Rapamycin, Antimycin-A, or Metformin rescued the TFEB activity and LC3 levels, resulting in enhanced Mtb clearance. Similarly, expressing NCoR1 exogenously rescued the AMPK-mTOR-TFEB signalling axis and Mtb killing. Overall, our data revealed a central role of NCoR1 in Mtb pathogenesis in myeloid cells.


Subject(s)
Mycobacterium tuberculosis , Nuclear Receptor Co-Repressor 1 , Animals , Humans , Mice , AMP-Activated Protein Kinases , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , Leukocytes, Mononuclear , Myeloid Cells , TOR Serine-Threonine Kinases , Nuclear Receptor Co-Repressor 1/metabolism
4.
J Mol Biol ; 432(8): 2754-2798, 2020 04 03.
Article in English | MEDLINE | ID: mdl-32044344

ABSTRACT

Autophagy is an intracellular degradation process that is essential for cellular survival, tissue homeostasis, and human health. The housekeeping functions of autophagy in mediating the clearance of aggregation-prone proteins and damaged organelles are vital for post-mitotic neurons. Improper functioning of this process contributes to the pathology of myriad human diseases, including neurodegeneration. Impairment in autophagy has been reported in several neurodegenerative diseases where pharmacological induction of autophagy has therapeutic benefits in cellular and transgenic animal models. However, emerging studies suggest that the efficacy of autophagy inducers, as well as the nature of the autophagy defects, may be context-dependent, and therefore, studies in disease-relevant experimental systems may provide more insights for clinical translation to patients. With the advancements in human stem cell technology, it is now possible to establish disease-affected cellular platforms from patients for investigating disease mechanisms and identifying candidate drugs in the appropriate cell types, such as neurons that are otherwise not accessible. Towards this, patient-derived human induced pluripotent stem cells (hiPSCs) have demonstrated considerable promise in constituting a platform for effective disease modeling and drug discovery. Multiple studies have utilized hiPSC models of neurodegenerative diseases to study autophagy and evaluate the therapeutic efficacy of autophagy inducers in neuronal cells. This review provides an overview of the regulation of autophagy, generation of hiPSCs via cellular reprogramming, and neuronal differentiation. It outlines the findings in various neurodegenerative disorders where autophagy has been studied using hiPSC models.


Subject(s)
Autophagy , Cell Differentiation , Cellular Reprogramming , Induced Pluripotent Stem Cells/cytology , Models, Biological , Neurodegenerative Diseases/pathology , Neurons/pathology , Animals , Humans
5.
Gene ; 717: 144043, 2019 Oct 30.
Article in English | MEDLINE | ID: mdl-31400407

ABSTRACT

Genes involved in the repair of DNA damage are emerging as playing important roles during the disease processes caused by pathogenic fungi. However, there are potentially hundreds of genes involved in DNA repair in a fungus and some of those genes can play additional roles within the cell. One such gene is RAD23, required for virulence of the human pathogenic fungus Cryptococcus neoformans, that encodes a protein involved in the nucleotide excision repair (NER) pathway. However, Rad23 is a dual function protein, with a role in either repair of damaged DNA or protein turn over by directing proteins to the proteasome. Here, these two functions of Rad23 were tested by the creation of a series of domain deletion alleles of RAD23 and the assessment of the strains for DNA repair, proteasome functions, and virulence properties. Deletion of the different domains was able to uncouple the two functions of Rad23, and the phenotypes of strains carrying such forms indicated that the role of RAD23 in virulence is due to its function in proteasomal-mediated protein degradation rather than NER.


Subject(s)
Cryptococcus neoformans/genetics , Cryptococcus neoformans/pathogenicity , DNA Repair/physiology , Fungal Proteins/genetics , Fungal Proteins/metabolism , Animals , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Larva/microbiology , Moths/microbiology , Mutation , Proteasome Endopeptidase Complex/metabolism , Protein Domains , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Stress, Physiological/genetics , Virulence
6.
Front Cell Dev Biol ; 6: 147, 2018.
Article in English | MEDLINE | ID: mdl-30483501

ABSTRACT

Autophagy, a cellular homeostatic process, which ensures cellular survival under various stress conditions, has catapulted to the forefront of innate defense mechanisms during intracellular infections. The ability of autophagy to tag and target intracellular pathogens toward lysosomal degradation is central to this key defense function. However, studies involving the role and regulation of autophagy during intracellular infections largely tend to ignore the housekeeping function of autophagy. A growing number of evidences now suggest that the housekeeping function of autophagy, rather than the direct pathogen degradation function, may play a decisive role to determine the outcome of infection and immunological balance. We discuss herein the studies that establish the homeostatic and anti-inflammatory function of autophagy, as well as role of bacterial effectors in modulating and coopting these functions. Given that the core autophagy machinery remains largely the same across diverse cargos, how selectivity plays out during intracellular infection remains intriguing. We explore here, the contrasting role of autophagy adaptors being both selective as well as pleotropic in functions and discuss whether E3 ligases could bring in the specificity to cargo selectivity.

7.
Proc Natl Acad Sci U S A ; 115(38): 9351-9358, 2018 09 18.
Article in English | MEDLINE | ID: mdl-30201707

ABSTRACT

Genome editing with CRISPR-Cas nucleases has been applied successfully to a wide range of cells and organisms. There is, however, considerable variation in the efficiency of cleavage and outcomes at different genomic targets, even within the same cell type. Some of this variability is likely due to the inherent quality of the interaction between the guide RNA and the target sequence, but some may also reflect the relative accessibility of the target. We investigated the influence of chromatin structure, particularly the presence or absence of nucleosomes, on cleavage by the Streptococcus pyogenes Cas9 protein. At multiple target sequences in two promoters in the yeast genome, we find that Cas9 cleavage is strongly inhibited when the DNA target is within a nucleosome. This inhibition is relieved when nucleosomes are depleted. Remarkably, the same is not true of zinc-finger nucleases (ZFNs), which cleave equally well at nucleosome-occupied and nucleosome-depleted sites. These results have implications for the choice of specific targets for genome editing, both in research and in clinical and other practical applications.


Subject(s)
CRISPR-Cas Systems , Gene Editing/methods , Genomics/methods , Nucleosomes/genetics , Bacterial Proteins/metabolism , Base Sequence , Binding Sites/genetics , CRISPR-Associated Protein 9 , Chromatin/genetics , Chromatin/metabolism , DNA, Fungal/genetics , DNA, Fungal/metabolism , Deoxyribonucleases, Type II Site-Specific/genetics , Endonucleases/metabolism , Nucleosomes/metabolism , Promoter Regions, Genetic/genetics , Saccharomyces cerevisiae Proteins/genetics , Zinc Finger Nucleases/metabolism
8.
Virulence ; 9(1): 426-446, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29261004

ABSTRACT

Mitochondria are best known for their role in the production of ATP; however, recent research implicates other mitochondrial functions in the virulence of human pathogenic fungi. Inhibitors of mitochondrial succinate dehydrogenase or the electron transport chain are successfully used to combat plant pathogenic fungi, but similar inhibition of mitochondrial functions has not been pursued for applications in medical mycology. Advances in understanding mitochondrial function relevant to human pathogenic fungi are in four major directions: 1) the role of mitochondrial morphology in virulence, 2) mitochondrial genetics, with a focus on mitochondrial DNA recombination and mitochondrial inheritance 3) the role of mitochondria in drug resistance, and 4) the interaction of mitochondria with other organelles. Collectively, despite the similarities in mitochondrial functions between fungi and animals, this organelle is currently an under-explored potential target to treat medical mycoses. Future research could define and then exploit those mitochondrial components best suited as drug targets.


Subject(s)
Energy Metabolism , Fungi/growth & development , Fungi/physiology , Mitochondria/metabolism , Antifungal Agents/isolation & purification , Antifungal Agents/pharmacology , Humans , Mycoses/drug therapy , Virulence
9.
Infect Immun ; 86(3)2018 03.
Article in English | MEDLINE | ID: mdl-29203547

ABSTRACT

Cryptococcus neoformans is a common environmental yeast and opportunistic pathogen responsible for 15% of AIDS-related deaths worldwide. Mortality primarily results from meningoencephalitis, which occurs when fungal cells disseminate to the brain from the initial pulmonary infection site. A key C. neoformans virulence trait is the polysaccharide capsule. Capsule shields C. neoformans from immune-mediated recognition and destruction. The main capsule component, glucuronoxylomannan (GXM), is found both attached to the cell surface and free in the extracellular space (as exo-GXM). Exo-GXM accumulates in patient serum and cerebrospinal fluid at microgram/milliliter concentrations, has well-documented immunosuppressive properties, and correlates with poor patient outcomes. However, it is poorly understood whether exo-GXM release is regulated or the result of shedding during normal capsule turnover. We demonstrate that exo-GXM release is regulated by environmental cues and inversely correlates with surface capsule levels. We identified genes specifically involved in exo-GXM release that do not alter surface capsule thickness. The first mutant, the liv7Δ strain, released less GXM than wild-type cells when capsule was not induced. The second mutant, the cnag_00658Δ strain, released more exo-GXM under capsule-inducing conditions. Exo-GXM release observed in vitro correlated with polystyrene adherence, virulence, and fungal burden during murine infection. Additionally, we found that exo-GXM reduced cell size and capsule thickness under capsule-inducing conditions, potentially influencing dissemination. Finally, we demonstrated that exo-GXM prevents immune cell infiltration into the brain during disseminated infection and highly inflammatory intracranial infection. Our data suggest that exo-GXM performs a distinct role from capsule GXM during infection, altering cell size and suppressing inflammation.


Subject(s)
Central Nervous System/cytology , Cryptococcosis/microbiology , Cryptococcus neoformans/pathogenicity , Fungal Polysaccharides/pharmacology , Animals , Central Nervous System/immunology , Cryptococcosis/pathology , Cryptococcus neoformans/immunology , Cryptococcus neoformans/metabolism , Female , Fungal Polysaccharides/genetics , Fungal Polysaccharides/metabolism , Lung Diseases, Fungal/microbiology , Mice , Mice, Inbred C57BL , Mutation , Virulence
10.
mBio ; 8(3)2017 05 30.
Article in English | MEDLINE | ID: mdl-28559486

ABSTRACT

The ability to adapt to a changing environment provides a selective advantage to microorganisms. In the case of many pathogens, a large change in their environment occurs when they move from a natural setting to a setting within a human host and then during the course of disease development to various locations within that host. Two clinical isolates of the human fungal pathogen Cryptococcus neoformans were identified from a collection of environmental and clinical strains that exhibited a mutator phenotype, which is a phenotype which provides the ability to change rapidly due to the accumulation of DNA mutations at high frequency. Whole-genome analysis of these strains revealed mutations in MSH2 of the mismatch repair pathway, and complementation confirmed that these mutations are responsible for the mutator phenotype. Comparison of mutation frequencies in deletion strains of eight mismatch repair pathway genes in C. neoformans showed that the loss of three of them, MSH2, MLH1, and PMS1, results in an increase in mutation rates. Increased mutation rates enable rapid microevolution to occur in these strains, generating phenotypic variations in traits associated with the ability to grow in vivo, in addition to allowing rapid generation of resistance to antifungal agents. Mutation of PMS1 reduced virulence, whereas mutation of MSH2 or MLH1 had no effect on the level of virulence. These findings thus support the hypothesis that this pathogenic fungus can take advantage of a mutator phenotype in order to cause disease but that it can do so only in specific pathways that lead to a mutator trait without a significant tradeoff in fitness.IMPORTANCE Fungi account for a large number of infections that are extremely difficult to treat; superficial fungal infections affect approximately 1.7 billion (25%) of the general population worldwide, and systemic fungal diseases result in an unacceptably high mortality rate. How fungi adapt to their hosts is not fully understood. This research investigated the role of changes to DNA sequences in adaption to the host environment and the ability to cause disease in Cryptococcus neoformans, one of the world's most common and most deadly fungal pathogens. The study results showed that microevolutionary rates are enhanced in either clinical isolates or in gene deletion strains with msh2 mutations. This gene has similar functions in regulating the rapid emergence of antifungal drug resistance in a distant fungal relative of C. neoformans, the pathogen Candida glabrata Thus, microevolution resulting from enhanced mutation rates may be a common contributor to fungal pathogenesis.


Subject(s)
Cryptococcus neoformans/genetics , DNA Mismatch Repair , DNA Replication , Evolution, Molecular , Mutation , Antifungal Agents/pharmacology , Cryptococcosis/microbiology , Cryptococcus neoformans/drug effects , Cryptococcus neoformans/growth & development , Cryptococcus neoformans/pathogenicity , DNA Damage/drug effects , DNA Repair , Drug Resistance, Fungal , Genes, Fungal , Genome, Fungal , Humans , Phenotype , Virulence/drug effects
11.
PLoS Genet ; 9(9): e1003769, 2013.
Article in English | MEDLINE | ID: mdl-24039606

ABSTRACT

The pathogenic fungus Cryptococcus neoformans uses the Bwc1-Bwc2 photoreceptor complex to regulate mating in response to light, virulence and ultraviolet radiation tolerance. How the complex controls these functions is unclear. Here, we identify and characterize a gene in Cryptococcus, UVE1, whose mutation leads to a UV hypersensitive phenotype. The homologous gene in fission yeast Schizosaccharomyces pombe encodes an apurinic/apyrimidinic endonuclease acting in the UVDE-dependent excision repair (UVER) pathway. C. neoformans UVE1 complements a S. pombe uvde knockout strain. UVE1 is photoregulated in a Bwc1-dependent manner in Cryptococcus, and in Neurospora crassa and Phycomyces blakesleeanus that are species that represent two other major lineages in the fungi. Overexpression of UVE1 in bwc1 mutants rescues their UV sensitivity phenotype and gel mobility shift experiments show binding of Bwc2 to the UVE1 promoter, indicating that UVE1 is a direct downstream target for the Bwc1-Bwc2 complex. Uve1-GFP fusions localize to the mitochondria. Repair of UV-induced damage to the mitochondria is delayed in the uve1 mutant strain. Thus, in C. neoformans UVE1 is a key gene regulated in response to light that is responsible for tolerance to UV stress for protection of the mitochondrial genome.


Subject(s)
Cryptococcus neoformans/drug effects , Endodeoxyribonucleases/genetics , Genome, Mitochondrial/genetics , Hypersensitivity/genetics , Schizosaccharomyces pombe Proteins/genetics , Cryptococcus neoformans/genetics , Cryptococcus neoformans/radiation effects , DNA Damage/radiation effects , DNA, Fungal/genetics , DNA, Fungal/radiation effects , Endodeoxyribonucleases/metabolism , Gene Knockout Techniques , Genome, Mitochondrial/radiation effects , Mutation , Neurospora crassa/genetics , Neurospora crassa/radiation effects , Phycomyces/genetics , Phycomyces/radiation effects , Schizosaccharomyces/genetics , Schizosaccharomyces/radiation effects , Schizosaccharomyces pombe Proteins/metabolism , Ultraviolet Rays
12.
Fungal Genet Biol ; 47(11): 881-92, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20451644

ABSTRACT

Virtually all organisms exposed to light are capable of sensing this environmental signal. In recent years the photoreceptors that mediate the ability of fungi to "see" have been identified in diverse species, and increasingly characterized. The small sizes of fungal genomes and ease in genetic and molecular biology manipulations make this kingdom ideal amongst the eukaryotes for understanding photosensing. The most widespread and conserved photosensory protein in the fungi is White collar 1 (WC-1), a flavin-binding photoreceptor that functions with WC-2 as a transcription factor complex. Other photosensory proteins in fungi include opsins, phytochromes and cryptochromes whose roles in fungal photobiology are not fully resolved and their distribution in the fungi requires further taxon sampling. Additional unknown photoreceptors await discovery. This review discusses the effects of light on fungi and the evolutionary processes that may have shaped the ability of species to sense and respond to this signal.


Subject(s)
Fungi/physiology , Gene Expression Regulation, Fungal , Light , Photobiology , Signal Transduction , Fungal Proteins/metabolism , Fungi/growth & development , Fungi/metabolism , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...