Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 72
Filter
Add more filters










Publication year range
1.
Bio Protoc ; 14(10): e4989, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38798980

ABSTRACT

Calcium signalling in the endocardium is critical for heart valve development. Calcium ion pulses in the endocardium are generated in response to mechanical forces due to blood flow and can be visualised in the beating zebrafish heart using a genetically encoded calcium indicator such as GCaMP7a. Analysing these pulses is challenging because of the rapid movement of the heart during heartbeat. This protocol outlines an imaging analysis method used to phase-match the cardiac cycle in single z-slice movies of the beating heart, allowing easy measurement of the calcium signal. Key features • Software to synchronise and analyse frames from movies of the beating heart corresponding to a user-defined phase of the cardiac cycle. • Software to measure the fluorescence intensity of the beating heart corresponding to a user-defined region of interest.

2.
J Physiol ; 602(4): 597-617, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38345870

ABSTRACT

Cardiac trabeculae are uneven ventricular muscular structures that develop during early embryonic heart development at the outer curvature of the ventricle. Their biomechanical function is not completely understood, and while their formation is known to be mechanosensitive, it is unclear whether ventricular tissue internal stresses play an important role in their formation. Here, we performed imaging and image-based cardiac biomechanics simulations on zebrafish embryonic ventricles to investigate these issues. Microscopy-based ventricular strain measurements show that the appearance of trabeculae coincided with enhanced deformability of the ventricular wall. Image-based biomechanical simulations reveal that the presence of trabeculae reduces ventricular tissue internal stresses, likely acting as structural support in response to the geometry of the ventricle. Passive ventricular pressure-loading experiments further reveal that the formation of trabeculae is associated with a spatial homogenization of ventricular tissue stiffnesses in healthy hearts, but gata1 morphants with a disrupted trabeculation process retain a spatial stiffness heterogeneity. Our findings thus suggest that modulating ventricular wall deformability, stresses, and stiffness are among the biomechanical functions of trabeculae. Further, experiments with gata1 morphants reveal that a reduction in fluid pressures and consequently ventricular tissue internal stresses can disrupt trabeculation, but a subsequent restoration of ventricular tissue internal stresses via vasopressin rescues trabeculation, demonstrating that tissue stresses are important to trabeculae formation. Overall, we find that tissue biomechanics is important to the formation and function of embryonic heart trabeculation. KEY POINTS: Trabeculations are fascinating and important cardiac structures and their abnormalities are linked to embryonic demise. However, their function in the heart and their mechanobiological formation processes are not completely understood. Our imaging and modelling show that tissue biomechanics is the key here. We find that trabeculations enhance cardiac wall deformability, reduce fluid pressure stresses, homogenize wall stiffness, and have alignments that are optimal for providing load-bearing structural support for the heart. We further discover that high ventricular tissue internal stresses consequent to high fluid pressures are needed for trabeculation formation through a rescue experiment, demonstrating that myocardial tissue stresses are as important as fluid flow wall shear stresses for trabeculation formation.


Subject(s)
Myocytes, Cardiac , Zebrafish , Animals , Biomechanical Phenomena , Signal Transduction/physiology , Myocardium , Heart , Heart Ventricles
4.
Nat Commun ; 14(1): 4352, 2023 07 19.
Article in English | MEDLINE | ID: mdl-37468521

ABSTRACT

Mechanosensing is a ubiquitous process to translate external mechanical stimuli into biological responses. Piezo1 ion channels are directly gated by mechanical forces and play an essential role in cellular mechanotransduction. However, readouts of Piezo1 activity are mainly examined by invasive or indirect techniques, such as electrophysiological analyses and cytosolic calcium imaging. Here, we introduce GenEPi, a genetically-encoded fluorescent reporter for non-invasive optical monitoring of Piezo1-dependent activity. We demonstrate that GenEPi has high spatiotemporal resolution for Piezo1-dependent stimuli from the single-cell level to that of the entire organism. GenEPi reveals transient, local mechanical stimuli in the plasma membrane of single cells, resolves repetitive contraction-triggered stimulation of beating cardiomyocytes within microtissues, and allows for robust and reliable monitoring of Piezo1-dependent activity in vivo. GenEPi will enable non-invasive optical monitoring of Piezo1 activity in mechanochemical feedback loops during development, homeostatic regulation, and disease.


Subject(s)
Ion Channels , Mechanotransduction, Cellular , Mechanotransduction, Cellular/physiology , Ion Channels/metabolism , Cell Membrane/metabolism , Mechanical Phenomena
5.
STAR Protoc ; 4(2): 102257, 2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37119141

ABSTRACT

Expansion microscopy of millimeter-large mechanically heterogeneous tissues, such as whole vertebrate embryos, has been limited, particularly when combined with post-expansion immunofluorescence. Here, we present a protocol to perform ultrastructure expansion microscopy of whole vertebrate embryos, optimized to perform post-expansion labeling. We describe steps for embedding and denaturing zebrafish larvae or mouse embryos. We then detail procedures for hydrogel handling and mounting. This protocol is particularly well suited for super-resolution imaging of macromolecular protein complexes in situ but does not preserve lipids. For complete details on the use and execution of this protocol, please refer to Steib et al.1.

6.
Cell Rep Methods ; 2(10): 100311, 2022 10 24.
Article in English | MEDLINE | ID: mdl-36313808

ABSTRACT

Super-resolution microscopy reveals the molecular organization of biological structures down to the nanoscale. While it allows the study of protein complexes in single cells, small organisms, or thin tissue sections, there is currently no versatile approach for ultrastructural analysis compatible with whole vertebrate embryos. Here, we present tissue ultrastructure expansion microscopy (TissUExM), a method to expand millimeter-scale and mechanically heterogeneous whole embryonic tissues, including Drosophila wing discs, whole zebrafish, and mouse embryos. TissUExM is designed for the observation of endogenous proteins. It permits quantitative characterization of protein complexes in various organelles at super-resolution in a range of ∼3 mm-sized tissues using conventional microscopes. We demonstrate its strength by investigating tissue-specific ciliary architecture heterogeneity and ultrastructural defects observed upon ciliary protein overexpression. Overall, TissUExM is ideal for performing ultrastructural studies and molecular mapping in situ in whole embryos.


Subject(s)
Microscopy , Zebrafish , Animals , Mice , Microscopy/methods , Drosophila
7.
PLoS Comput Biol ; 18(6): e1010142, 2022 06.
Article in English | MEDLINE | ID: mdl-35666714

ABSTRACT

Embryonic heart development is a mechanosensitive process, where specific fluid forces are needed for the correct development, and abnormal mechanical stimuli can lead to malformations. It is thus important to understand the nature of embryonic heart fluid forces. However, the fluid dynamical behaviour close to the embryonic endocardial surface is very sensitive to the geometry and motion dynamics of fine-scale cardiac trabecular surface structures. Here, we conducted image-based computational fluid dynamics (CFD) simulations to quantify the fluid mechanics associated with the zebrafish embryonic heart trabeculae. To capture trabecular geometric and motion details, we used a fish line that expresses fluorescence at the endocardial cell membrane, and high resolution 3D confocal microscopy. Our endocardial wall shear stress (WSS) results were found to exceed those reported in existing literature, which were estimated using myocardial rather than endocardial boundaries. By conducting simulations of single intra-trabecular spaces under varied scenarios, where the translational or deformational motions (caused by contraction) were removed, we found that a squeeze flow effect was responsible for most of the WSS magnitude in the intra-trabecular spaces, rather than the shear interaction with the flow in the main ventricular chamber. We found that trabecular structures were responsible for the high spatial variability of the magnitude and oscillatory nature of WSS, and for reducing the endocardial deformational burden. We further found cells attached to the endocardium within the intra-trabecular spaces, which were likely embryonic hemogenic cells, whose presence increased endocardial WSS. Overall, our results suggested that a complex multi-component consideration of both anatomic features and motion dynamics were needed to quantify the trabeculated embryonic heart fluid mechanics.


Subject(s)
Models, Cardiovascular , Zebrafish , Animals , Heart , Hydrodynamics , Organogenesis , Stress, Mechanical
8.
Semin Cell Dev Biol ; 130: 45-55, 2022 10.
Article in English | MEDLINE | ID: mdl-35367121

ABSTRACT

During vertebrate development, cells must proliferate, move, and differentiate to form complex shapes. Elucidating the mechanisms underlying the molecular and cellular processes involved in tissue morphogenesis is essential to understanding developmental programmes. Mechanical stimuli act as a major contributor of morphogenetic processes and impact on cell behaviours to regulate tissue shape and size. Specifically, cell extrinsic physical forces are translated into biochemical signals within cells, through the process of mechanotransduction, activating multiple mechanosensitive pathways and defining cell behaviours. Physical forces generated by tissue mechanics and the extracellular matrix are crucial to orchestrate tissue patterning and cell fate specification. At the cell scale, the actomyosin network generates the cellular tension behind the tissue mechanics involved in building tissue. Thus, understanding the role of physical forces during morphogenetic processes requires the consideration of the contribution of cell intrinsic and cell extrinsic influences. The recent development of multidisciplinary approaches, as well as major advances in genetics, microscopy, and force-probing tools, have been key to push this field forward. With this review, we aim to discuss recent work on how tissue shape can be controlled by mechanical forces by focusing specifically on vertebrate organogenesis. We consider the influences of mechanical forces by discussing the cell-intrinsic forces (such as cell tension and proliferation) and cell-extrinsic forces (such as substrate stiffness and flow forces). We review recently described processes supporting the role of intratissue force generation and propagation in the context of shape emergence. Lastly, we discuss the emerging role of tissue-scale changes in tissue material properties, extrinsic forces, and shear stress on shape establishment.


Subject(s)
Actomyosin , Mechanotransduction, Cellular , Actomyosin/metabolism , Extracellular Matrix/metabolism , Morphogenesis/physiology , Stress, Mechanical
9.
Dev Cell ; 57(5): 598-609.e5, 2022 03 14.
Article in English | MEDLINE | ID: mdl-35245444

ABSTRACT

Organ morphogenesis involves dynamic changes of tissue properties while cells adapt to their mechanical environment through mechanosensitive pathways. How mechanical cues influence cell behaviors during morphogenesis remains unclear. Here, we studied the formation of the zebrafish atrioventricular canal (AVC) where cardiac valves develop. We show that the AVC forms within a zone of tissue convergence associated with the increased activation of the actomyosin meshwork and cell-orientation changes. We demonstrate that tissue convergence occurs with a reduction of cell volume triggered by mechanical forces and the mechanosensitive channel TRPP2/TRPV4. Finally, we show that the extracellular matrix component hyaluronic acid controls cell volume changes. Together, our data suggest that multiple force-sensitive signaling pathways converge to modulate cell volume. We conclude that cell volume reduction is a key cellular feature activated by mechanotransduction during cardiovascular morphogenesis. This work further identifies how mechanical forces and extracellular matrix influence tissue remodeling in developing organs.


Subject(s)
Zebrafish Proteins , Zebrafish , Animals , Cell Size , Heart Valves/metabolism , Mechanotransduction, Cellular , Morphogenesis , TRPV Cation Channels/metabolism , Zebrafish/metabolism , Zebrafish Proteins/metabolism
10.
PLoS Biol ; 20(1): e3001505, 2022 01.
Article in English | MEDLINE | ID: mdl-35030171

ABSTRACT

In the clinic, most cases of congenital heart valve defects are thought to arise through errors that occur after the endothelial-mesenchymal transition (EndoMT) stage of valve development. Although mechanical forces caused by heartbeat are essential modulators of cardiovascular development, their role in these later developmental events is poorly understood. To address this question, we used the zebrafish superior atrioventricular valve (AV) as a model. We found that cellularized cushions of the superior atrioventricular canal (AVC) morph into valve leaflets via mesenchymal-endothelial transition (MEndoT) and tissue sheet delamination. Defects in delamination result in thickened, hyperplastic valves, and reduced heart function. Mechanical, chemical, and genetic perturbation of cardiac forces showed that mechanical stimuli are important regulators of valve delamination. Mechanistically, we show that forces modulate Nfatc activity to control delamination. Together, our results establish the cellular and molecular signature of cardiac valve delamination in vivo and demonstrate the continuous regulatory role of mechanical forces and blood flow during valve formation.


Subject(s)
Heart Valves/abnormalities , Hemodynamics , NFATC Transcription Factors/metabolism , Zebrafish/embryology , Animals , Animals, Genetically Modified , Embryo, Nonmammalian , Endothelium , Heart/embryology , Hemorheology , Mechanical Phenomena , Mesoderm , NFATC Transcription Factors/genetics , Zebrafish/genetics
11.
Science ; 374(6565): 351-354, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34648325

ABSTRACT

Developing cardiovascular systems use mechanical forces to take shape, but how ubiquitous blood flow forces instruct local cardiac cell identity is still unclear. By manipulating mechanical forces in vivo, we show here that shear stress is necessary and sufficient to promote valvulogenesis. We found that valve formation is associated with the activation of an extracellular adenosine triphosphate (ATP)­dependent purinergic receptor pathway, specifically triggering calcium ion (Ca2+) pulses and nuclear factor of activated T cells 1 (Nfatc1) activation. Thus, mechanical forces are converted into discrete bioelectric signals by an ATP-Ca2+-Nfatc1­mechanosensitive pathway to generate positional information and control valve formation.


Subject(s)
Heart Valves/growth & development , Shear Strength , Stress, Mechanical , Adenosine Triphosphate/metabolism , Animals , Calcium/metabolism , Calcium Signaling , Electrophysiological Phenomena , Endothelial Cells/physiology , Heart Valves/cytology , Heart Valves/metabolism , NFATC Transcription Factors/metabolism , Receptors, Purinergic P2/metabolism , Zebrafish
12.
Dev Dyn ; 249(12): 1455-1469, 2020 12.
Article in English | MEDLINE | ID: mdl-33103836

ABSTRACT

BACKGROUND: The epicardium is the outer mesothelial layer of the heart. It encloses the myocardium and plays key roles in heart development and regeneration. It derives from the proepicardium (PE), cell clusters that appear in the dorsal pericardium (DP) close to the atrioventricular canal and the venous pole of the heart, and are released into the pericardial cavity. PE cells are advected around the beating heart until they attach to the myocardium. Bmp and Notch signaling influence PE formation, but it is unclear how both signaling pathways interact during this process in the zebrafish. RESULTS: Here, we show that the developing PE is influenced by Notch signaling derived from the endothelium. Overexpression of the intracellular receptor of notch in the endothelium enhances bmp expression, increases the number of pSmad1/5 positive cells in the DP and PE, and enhances PE formation. On the contrary, pharmacological inhibition of Notch1 impairs PE formation. bmp2b overexpression can rescue loss of PE formation in the presence of a Notch1 inhibitor, but Notch gain-of-function could not recover PE formation in the absence of Bmp signaling. CONCLUSIONS: Endothelial Notch signaling activates bmp expression in the heart tube, which in turn induces PE cluster formation from the DP layer.


Subject(s)
Bone Morphogenetic Proteins/metabolism , Heart/embryology , Organogenesis/physiology , Pericardium/embryology , Receptors, Notch/metabolism , Signal Transduction/physiology , Animals , Cell Differentiation/physiology , Pericardium/metabolism , Zebrafish
13.
Cell Rep ; 32(3): 107932, 2020 07 21.
Article in English | MEDLINE | ID: mdl-32698004

ABSTRACT

Cilia and the intraflagellar transport (IFT) proteins involved in ciliogenesis are associated with congenital heart diseases (CHDs). However, the molecular links between cilia, IFT proteins, and cardiogenesis are yet to be established. Using a combination of biochemistry, genetics, and live-imaging methods, we show that IFT complex B proteins (Ift88, Ift54, and Ift20) modulate the Hippo pathway effector YAP1 in zebrafish and mouse. We demonstrate that this interaction is key to restrict the formation of the proepicardium and the myocardium. In cellulo experiments suggest that IFT88 and IFT20 interact with YAP1 in the cytoplasm and functionally modulate its activity, identifying a molecular link between cilia-related proteins and the Hippo pathway. Taken together, our results highlight a noncanonical role for IFT complex B proteins during cardiogenesis and shed light on a mechanism of action for ciliary proteins in YAP1 regulation.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Carrier Proteins/metabolism , Cell Cycle Proteins/metabolism , Flagella/metabolism , Heart/embryology , Organogenesis , Protein Serine-Threonine Kinases/metabolism , Trans-Activators/metabolism , Zebrafish Proteins/metabolism , Zebrafish/embryology , Animals , Biological Transport , Bone Morphogenetic Proteins/metabolism , Cilia/metabolism , HEK293 Cells , HeLa Cells , Humans , Mice, Inbred C57BL , Pericardium/metabolism , Protein Binding , Signal Transduction , YAP-Signaling Proteins
14.
Front Physiol ; 11: 552, 2020.
Article in English | MEDLINE | ID: mdl-32581842

ABSTRACT

The endothelium is the cell monolayer that lines the interior of the blood vessels separating the vessel lumen where blood circulates, from the surrounding tissues. During embryonic development, endothelial cells (ECs) must ensure that a tight barrier function is maintained whilst dynamically adapting to the growing vascular tree that is being formed and remodeled. Blood circulation generates mechanical forces, such as shear stress and circumferential stretch that are directly acting on the endothelium. ECs actively respond to flow-derived mechanical cues by becoming polarized, migrating and changing neighbors, undergoing shape changes, proliferating or even leaving the tissue and changing identity. It is now accepted that coordinated changes at the single cell level drive fundamental processes governing vascular network morphogenesis such as angiogenic sprouting, network pruning, lumen formation, regulation of vessel caliber and stability or cell fate transitions. Here we summarize the cell biology and mechanics of ECs in response to flow-derived forces, discuss the latest advances made at the single cell level with particular emphasis on in vivo studies and highlight potential implications for vascular pathologies.

15.
Cell Rep ; 31(2): 107505, 2020 04 14.
Article in English | MEDLINE | ID: mdl-32294443

ABSTRACT

Blood flow modulates endothelial cell (EC) response during angiogenesis. Shear stress is known to control gene expression related to the endothelial-mesenchymal transition and endothelial-hematopoietic transition. However, the impact of blood flow on the cellular processes associated with EC extrusion is less well understood. To address this question, we dynamically record EC movements and use 3D quantitative methods to segregate the contributions of various cellular processes to the cellular trajectories in the zebrafish dorsal aorta. We find that ECs spread toward the cell extrusion area following the tissue deformation direction dictated by flow-derived mechanical forces. Cell extrusion increases when blood flow is impaired. Similarly, the mechanosensor polycystic kidney disease 2 (pkd2) limits cell extrusion, suggesting that ECs actively sense mechanical forces in the process. These findings identify pkd2 and flow as critical regulators of EC extrusion and suggest that mechanical forces coordinate this process by maintaining ECs within the endothelium.


Subject(s)
Aorta/physiology , Blood Circulation/physiology , Endothelium, Vascular/metabolism , Animals , Arteries/physiology , Cell Movement/physiology , Endothelial Cells/metabolism , Hemodynamics , Mechanotransduction, Cellular , Polycystic Kidney, Autosomal Dominant/metabolism , Stress, Mechanical , TRPP Cation Channels/metabolism , Zebrafish/genetics , Zebrafish/metabolism , Zebrafish Proteins/metabolism
16.
Biomed Opt Express ; 11(1): 8-26, 2020 Jan 01.
Article in English | MEDLINE | ID: mdl-32010496

ABSTRACT

"How thick is your light sheet?" is a question that has been asked frequently after talks showing impressive renderings of 3D data acquired by a light-sheet microscope. This question is motivated by the fact that most of the time the thickness of the light-sheet is uniquely associated to the axial resolution of the microscope. However, the link between light-sheet thickness and axial resolution has never been systematically assessed and it is still unclear how both are connected. The question is not trivial because commonly employed measures cannot readily be applied or do not lead to easily interpretable results for the many different types of light sheet. Here, we introduce a set of intuitive measures that helps to define the relationship between light sheet thickness and axial resolution by using simulation data. Unexpectedly, our analysis revealed a trade-off between better axial resolution and thinner light-sheet thickness. Our results are surprising because thicker light-sheets that provide lower image contrast have previously not been associated with better axial resolution. We conclude that classical Gaussian illumination beams should be used when image contrast is most important, and more advanced types of illumination represent a way to optimize axial resolution at the expense of image contrast.

17.
Curr Opin Genet Dev ; 57: 106-116, 2019 08.
Article in English | MEDLINE | ID: mdl-31586750

ABSTRACT

Cardiovascular morphogenesis involves cell behavior and cell identity changes that are activated by mechanical forces associated with heart function. Recently, advances in in vivo imaging, methods to alter blood flow, and computational modelling have greatly advanced our understanding of how forces produced by heart contraction and blood flow impact different morphogenetic processes. Meanwhile, traditional genetic approaches have helped to elucidate how endothelial cells respond to forces at the cellular and molecular level. Here we discuss the principles of endothelial mechanosensitity and their interplay with cellular processes during cardiovascular morphogenesis. We then discuss their implications in the field of cardiovascular tissue engineering.


Subject(s)
Cardiovascular System/growth & development , Heart/growth & development , Mechanotransduction, Cellular/genetics , Morphogenesis/genetics , Animals , Computer Simulation , Endothelial Cells/cytology , Humans , Tissue Engineering
18.
Elife ; 82019 09 16.
Article in English | MEDLINE | ID: mdl-31524599

ABSTRACT

Mechanical forces are well known for modulating heart valve developmental programs. Yet, it is still unclear how genetic programs and mechanosensation interact during heart valve development. Here, we assessed the mechanosensitive pathways involved during zebrafish outflow tract (OFT) valve development in vivo. Our results show that the hippo effector Yap1, Klf2, and the Notch signaling pathway are all essential for OFT valve morphogenesis in response to mechanical forces, albeit active in different cell layers. Furthermore, we show that Piezo and TRP mechanosensitive channels are important factors modulating these pathways. In addition, live reporters reveal that Piezo controls Klf2 and Notch activity in the endothelium and Yap1 localization in the smooth muscle progenitors to coordinate OFT valve morphogenesis. Together, this work identifies a unique morphogenetic program during OFT valve formation and places Piezo as a central modulator of the cell response to forces in this process.


Subject(s)
Heart Valves/embryology , Ion Channels/metabolism , Kruppel-Like Transcription Factors/metabolism , Receptors, Notch/metabolism , Signal Transduction , Stress, Mechanical , Trans-Activators/metabolism , Zebrafish Proteins/metabolism , Animals , YAP-Signaling Proteins , Zebrafish
19.
J Cell Sci ; 132(14)2019 07 30.
Article in English | MEDLINE | ID: mdl-31363000

ABSTRACT

Cells need to sense their mechanical environment during the growth of developing tissues and maintenance of adult tissues. The concept of force-sensing mechanisms that act through cell-cell and cell-matrix adhesions is now well established and accepted. Additionally, it is widely believed that force sensing can be mediated through cilia. Yet, this hypothesis is still debated. By using primary cilia sensing as a paradigm, we describe the physical requirements for cilium-mediated mechanical sensing and discuss the different hypotheses of how this could work. We review the different mechanosensitive channels within the cilium, their potential mode of action and their biological implications. In addition, we describe the biological contexts in which cilia are acting - in particular, the left-right organizer - and discuss the challenges to discriminate between cilium-mediated chemosensitivity and mechanosensitivity. Throughout, we provide perspectives on how quantitative analysis and physics-based arguments might help to better understand the biological mechanisms by which cells use cilia to probe their mechanical environment.


Subject(s)
Cilia/physiology , Animals , Biomechanical Phenomena , Humans , Mechanotransduction, Cellular , Organ Specificity , Rheology
20.
Elife ; 82019 06 25.
Article in English | MEDLINE | ID: mdl-31237233

ABSTRACT

Lower vertebrate and neonatal mammalian hearts exhibit the remarkable capacity to regenerate through the reprogramming of pre-existing cardiomyocytes. However, how cardiac injury initiates signaling pathways controlling this regenerative reprogramming remains to be defined. Here, we utilize in vivo biophysical and genetic fate mapping zebrafish studies to reveal that altered hemodynamic forces due to cardiac injury activate a sequential endocardial-myocardial signaling cascade to direct cardiomyocyte reprogramming and heart regeneration. Specifically, these altered forces are sensed by the endocardium through the mechanosensitive channel Trpv4 to control Klf2a transcription factor expression. Consequently, Klf2a then activates endocardial Notch signaling which results in the non-cell autonomous initiation of myocardial Erbb2 and BMP signaling to promote cardiomyocyte reprogramming and heart regeneration. Overall, these findings not only reveal how the heart senses and adaptively responds to environmental changes due to cardiac injury, but also provide insight into how flow-mediated mechanisms may regulate cardiomyocyte reprogramming and heart regeneration.


Subject(s)
Endocardium/physiology , Heart Injuries/pathology , Hemodynamics , Mechanotransduction, Cellular , Myocytes, Cardiac/physiology , Regeneration , Animals , Kruppel-Like Transcription Factors/metabolism , Receptors, Notch/metabolism , TRPV Cation Channels/metabolism , Zebrafish , Zebrafish Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...