Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Biomacromolecules ; 22(9): 3718-3730, 2021 09 13.
Article in English | MEDLINE | ID: mdl-34333966

ABSTRACT

Protein immobilization on material surfaces is emerging as a powerful tool in the design of devices and active materials for biomedical and pharmaceutical applications as well as for catalysis. Preservation of the protein's biological functionality is crucial to the design process and is dependent on the ability to maintain its structural and dynamical integrity while removed from the natural surroundings. The scientific techniques to validate the structure of immobilized proteins are scarce and usually provide limited information as a result of poor resolution. In this work, we benchmarked the ability of standard solid-state NMR techniques to resolve the effects of binding to dissimilar silica materials on a model protein. In particular, the interactions between ubiquitin and the surfaces of MCM41, SBA15, and silica formed in situ were tested for their influence on the structure and dynamics of the protein. It is shown that the protein's globular fold in the free state is only slightly perturbed in the three silica materials. Local motions on a residue level that are quenched by immobilization or, conversely, that arise from the process are also detailed. NMR measurements show that these perturbations are unique to each silica material and can serve as reporters of the characteristic surface chemistry.


Subject(s)
Silicon Dioxide , Ubiquitin , Immobilized Proteins , Magnetic Resonance Spectroscopy , Proteins
2.
J Chem Theory Comput ; 12(10): 5179-5189, 2016 Oct 11.
Article in English | MEDLINE | ID: mdl-27490188

ABSTRACT

The coenzyme nicotinamide adenine dinucleotide (NAD+) and its reduced form (NADH) play ubiquitous roles as oxidizing and reducing agents in nature. The binding, and possibly the chemical redox step, of NAD+/NADH may be influenced by the cofactor conformational distribution and, in particular, by the ribose puckering of its nicotinamide-ribonucleoside (NR) moiety. In many hybrid quantum mechanics-molecular mechanics (QM/MM) studies of NAD+/NADH dependent enzymes, the QM region is treated by semiempirical (SE) methods. Recent work suggests that SE methods do not adequately describe the ring puckering in sugar molecules. In the present work we adopt an efficient and practical strategy to correct for this deficiency for NAD+/NADH. We have implemented a cost-effective correction to a SE Hamiltonian by adding a correction potential, which is defined as the difference between an accurate benchmark density functional theory (DFT) potential energy surface (PES) and the SE PES. In practice, this is implemented via a B-spline interpolation scheme for the grid-based potential energy difference surface. We find that the puckering population distributions obtained from free energy QM(SE)/MM simulations are in good agreement with DFT and in fair accord with experimental results. The corrected PES should facilitate a more accurate description of the ribose puckering in the NAD+/NADH cofactor in simulations of biological systems.


Subject(s)
Molecular Dynamics Simulation , NAD/chemistry , Quantum Theory , Carbohydrates/chemistry , Gases/chemistry , NAD/metabolism , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL