Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters











Publication year range
1.
Front Microbiol ; 15: 1329620, 2024.
Article in English | MEDLINE | ID: mdl-38516018

ABSTRACT

Wet markets in low-and middle-income countries are often reported to have inadequate sanitation resulting in fecal contamination of sold produce. Consumption of contaminated wet market-sourced foods has been linked to individual illness and disease outbreaks. This pilot study, conducted in two major wet markets in Dhaka city, Bangladesh during a 4-month period in 2021 aimed to assess the occurrence and characteristics of Escherichia coli and non-typhoidal Salmonella spp. (NTS) from tilapia (Oreochromis niloticus) and shrimp (Penaeus monodon). Fifty-four individuals of each species were collected. The identity of the bacterial isolates was confirmed by PCR and their susceptibility toward 15 antimicrobials was tested by disk diffusion. The whole genome of 15 E. coli and nine Salmonella spp. were sequenced using Oxford Nanopore Technology. E. coli was present in 60-74% of tilapia muscle tissue and 41-44% of shrimp muscle tissue. Salmonella spp. was found in skin (29%) and gills (26%) of tilapia, and occasionally in muscle and intestinal samples of shrimp. The E. coli had several Multilocus sequence typing and serotypes and limited antimicrobial resistance (AMR) determinants, such as point mutations on glpT and pmrB. One E. coli (BD17) from tilapia carried resistance genes for beta-lactams, quinolones, and tetracycline. All the E. coli belonged to commensal phylogroups B1 and A and showed no Shiga-toxin and other virulence genes, confirming their commensal non-pathogenic status. Among the Salmonella isolates, five belonged to Kentucky serovar and had similar AMR genes and phenotypic resistance patterns. Three strains of this serovar were ST198, often associated with human disease, carried the same resistance genes, and were genetically related to strains from the region. The two undetermined sequence types of S. Kentucky were distantly related and positioned in a separate phylogenetic clade. Two Brunei serovar isolates, one Augustenborg isolate, and one Hartford isolate showed different resistance profiles. This study revealed high fecal contamination levels in tilapia and shrimp sold at two main wet markets in Dhaka. Together with the occurrence of Salmonella spp., including S. Kentucky ST198, a well-known human pathogen, these results stress the need to improve hygienic practices and sanitation standards at markets to improve food safety and protect consumer health.

2.
Microb Genom ; 9(8)2023 08.
Article in English | MEDLINE | ID: mdl-37540224

ABSTRACT

Bacteria from the family Vibrionaceae have been implicated in mass mortalities of farmed Pacific oysters (Magallana gigas) in multiple countries, leading to substantial impairment of growth in the sector. In Ireland there has been concern that Vibrio have been involved in serious summer outbreaks. There is evidence that Vibrio aestuarianus is increasingly becoming the main pathogen of concern for the Pacific oyster industry in Ireland. While bacteria belonging to the Vibrio splendidus clade are also detected frequently in mortality episodes, their role in the outbreaks of summer mortality is not well understood. To identify and characterize strains involved in these outbreaks, 43 Vibrio isolates were recovered from Pacific oyster summer mass mortality episodes in Ireland from 2008 to 2015 and these were whole-genome sequenced. Among these, 25 were found to be V. aestuarianus (implicated in disease) and 18 were members of the V. splendidus species complex (role in disease undetermined). Two distinct clades of V. aestuarianus - clade A and clade B - were found that had previously been described as circulating within French oyster culture. The high degree of similarity between the Irish and French V. aestuarianus isolates points to translocation of the pathogen between Europe's two major oyster-producing countries, probably via trade in spat and other age classes. V. splendidus isolates were more diverse, but the data reveal a single clone of this species that has spread across oyster farms in Ireland. This underscores that Vibrio could be transmitted readily across oyster farms. The presence of V. aestuarianus clades A and B in not only France but also Ireland adds weight to growing concern that this pathogen is spreading and impacting Pacific oyster production within Europe.


Subject(s)
Crassostrea , Vibrio , Animals , Ireland/epidemiology , Disease Outbreaks
3.
PLoS One ; 18(5): e0285257, 2023.
Article in English | MEDLINE | ID: mdl-37167256

ABSTRACT

While both virulent and putatively avirulent Yersinia ruckeri strains exist in aquaculture environments, the relationship between the distribution of virulence-associated factors and de facto pathogenicity in fish remains poorly understood. Pan-genome analysis of 18 complete genomes, representing established virulent and putatively avirulent lineages of Y. ruckeri, revealed the presence of a number of accessory genetic determinants. Further investigation of 68 draft genome assemblies revealed that the distribution of certain putative virulence factors correlated well with virulence and host-specificity. The inverse-autotransporter invasin locus yrIlm was, however, the only gene present in all virulent strains, while absent in lineages regarded as avirulent. Strains known to be associated with significant mortalities in salmonid aquaculture display a combination of serotype O1-LPS and yrIlm, with the well-documented highly virulent lineages, represented by MLVA clonal complexes 1 and 2, displaying duplication of the yrIlm locus. Duplication of the yrIlm locus was further found to have evolved over time in clonal complex 1, where some modern, highly virulent isolates display up to three copies.


Subject(s)
Fish Diseases , Oncorhynchus mykiss , Yersinia Infections , Animals , Yersinia ruckeri/genetics , Virulence/genetics , Serogroup
4.
Environ Adv ; 9: None, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36466197

ABSTRACT

The World Health Organization considers antimicrobial resistance as one of the most pressing global issues which poses a fundamental threat to human health, development, and security. Due to demographic and environmental factors, the marine environment of the Gulf Cooperation Council (GCC) region may be particularly susceptible to the threat of antimicrobial resistance. However, there is currently little information on the presence of AMR in the GCC marine environment to inform the design of appropriate targeted surveillance activities. The objective of this study was to develop, implement and conduct a rapid regional baseline monitoring survey of the presence of AMR in the GCC marine environment, through the analysis of seawater collected from high-risk areas across four GCC states: (Bahrain, Oman, Kuwait, and the United Arab Emirates). 560 Escherichia coli strains were analysed as part of this monitoring programme between December 2018 and May 2019. Multi-drug resistance (resistance to three or more structural classes of antimicrobials) was observed in 32.5% of tested isolates. High levels of reduced susceptibility to ampicillin (29.6%), nalidixic acid (27.9%), tetracycline (27.5%), sulfamethoxazole (22.5%) and trimethoprim (22.5%) were observed. Reduced susceptibility to the high priority critically important antimicrobials: azithromycin (9.3%), ceftazidime (12.7%), cefotaxime (12.7%), ciprofloxacin (44.6%), gentamicin (2.7%) and tigecycline (0.5%), was also noted. A subset of 173 isolates was whole genome sequenced, and high carriage rates of qnrS1 (60/173) and bla CTX-M-15 (45/173) were observed, correlating with reduced susceptibility to the fluoroquinolones and third generation cephalosporins, respectively. This study is important because of the resistance patterns observed, the demonstrated utility in applying genomic-based approaches to routine microbiological monitoring, and the overall establishment of a transnational AMR surveillance framework focussed on coastal and marine environments.

5.
Genomics ; 113(6): 3842-3850, 2021 11.
Article in English | MEDLINE | ID: mdl-34547402

ABSTRACT

Genetic resistance to infectious pancreatic necrosis virus (IPNV) in Atlantic salmon is a rare example of a trait where a single locus (QTL) explains almost all of the genetic variation. Genetic marker tests based on this QTL on salmon chromosome 26 have been widely applied in selective breeding to markedly reduce the incidence of the disease. In the current study, whole genome sequencing and functional annotation approaches were applied to characterise genes and variants in the QTL region. This was complemented by an analysis of differential expression between salmon fry of homozygous resistant and homozygous susceptible genotypes challenged with IPNV. These analyses pointed to the NEDD-8 activating enzyme 1 (nae1) gene as a putative functional candidate underlying the QTL effect. The role of nae1 in IPN resistance was further assessed via CRISPR-Cas9 knockout of the nae1 gene and chemical inhibition of the nae1 protein activity in Atlantic salmon cell lines, both of which resulted in highly significant reduction in productive IPNV replication. In contrast, CRISPR-Cas9 knockout of a candidate gene previously purported to be a cellular receptor for the virus (cdh1) did not have a major impact on productive IPNV replication. These results suggest that nae1 is the causative gene underlying the major QTL affecting resistance to IPNV in salmon, provide further evidence for the critical role of neddylation in host-pathogen interactions, and highlight the value in combining high-throughput genomics approaches with targeted genome editing to understand the genetic basis of disease resistance.


Subject(s)
Fish Diseases , Infectious pancreatic necrosis virus , Salmo salar , Animals , Fish Diseases/genetics , Genetic Markers , Quantitative Trait Loci , Salmo salar/genetics
6.
Transbound Emerg Dis ; 68(3): 1550-1563, 2021 May.
Article in English | MEDLINE | ID: mdl-32920975

ABSTRACT

In late 2018, unusual patterns of very high mortality (>50% production) were reported in intensive tilapia cage culture systems across Lake Volta in Ghana. Samples of fish and fry were collected and analysed from two affected farms between October 2018 and February 2019. Affected fish showed darkening, erratic swimming and abdominal distension with associated ascites. Histopathological observations of tissues taken from moribund fish at different farms revealed lesions indicative of viral infection. These included haematopoietic cell nuclear and cytoplasmic pleomorphism with marginalization of chromatin and fine granulation. Transmission electron microscopy showed cells containing conspicuous virions with typical iridovirus morphology, that is enveloped, with icosahedral and/or polyhedral geometries and with a diameter c.160 nm. PCR confirmation and DNA sequencing identified the virions as infectious spleen and kidney necrosis virus (ISKNV). Samples of fry and older animals were all strongly positive for the presence of the virus by qPCR. All samples tested negative for TiLV and nodavirus by qPCR. All samples collected from farms prior to the mortality event were negative for ISKNV. Follow-up testing of fish and fry sampled from 5 additional sites in July 2019 showed all farms had fish that were PCR-positive for ISKNV, whether there was active disease on the farm or not, demonstrating the disease was endemic to farms all over Lake Volta by that point. The results suggest that ISKNV was the cause of disease on the investigated farms and likely had a primary role in the mortality events. A common observation of coinfections with Streptococcus agalactiae and other tilapia bacterial pathogens further suggests that these may interact to cause severe pathology, particularly in larger fish. Results demonstrate that there are a range of potential threats to the sustainability of tilapia aquaculture that need to be guarded against.


Subject(s)
Cichlids , DNA Virus Infections/veterinary , Fish Diseases/diagnosis , Iridoviridae/isolation & purification , Animals , Aquaculture , DNA Virus Infections/diagnosis , DNA Virus Infections/virology , Fish Diseases/virology , Ghana
7.
Microbiol Resour Announc ; 9(36)2020 Sep 03.
Article in English | MEDLINE | ID: mdl-32883783

ABSTRACT

Here, we report the complete genome of piscine Streptococcus agalactiae 01173 serotype Ia, which was generated using long-read sequencing technology. The bacteria were isolated from wild fish displaying signs of streptococcosis, from a fish kill incident in Kuwait.

8.
Front Microbiol ; 11: 1430, 2020.
Article in English | MEDLINE | ID: mdl-32695083

ABSTRACT

Vibrio anguillarum is the causative agent of vibriosis in many species important to aquaculture. We generated whole genome sequence (WGS) data on a diverse collection of 64 V. anguillarum strains, which we supplemented with 41 publicly available genomes to produce a combined dataset of 105 strains. These WGS data resolved six major lineages (L1-L6), and the additional use of multilocus sequence analysis (MLSA) clarified the association of L1 with serotype O1 and Salmonidae hosts (salmon/trout), and L2 with serotypes O2a/O2b/O2c and Gadidae hosts (cod). Our analysis also revealed a large-scale homologous replacement of 526-kb of core genome in an L2 strain from a con-specific donor. Although the strains affected by this recombination event are exclusively associated with Gadidae, we find no clear genetic evidence that it has played a causal role in host specialism. Whilst it is established that Vibrio species freely recombine, to our knowledge this is the first report of a contiguous recombinational replacement of this magnitude in any Vibrio genome. We also note a smaller accessory region of high single nucleotide polymorphism (SNP) density and gene content variation that contains lipopolysaccharide biosynthesis genes which may play a role in determining serotype.

9.
Dis Aquat Organ ; 136(2): 133-146, 2019 Oct 17.
Article in English | MEDLINE | ID: mdl-31621646

ABSTRACT

Wild-caught ballan wrasse Labrus bergylta are translocated en masse from the British south-west coast to Scotland for use as cleaner fish to tackle Atlantic salmon Salmo salar sea lice infestations; however, very little is known about the background health status of this species. This is the first health assessment of wild ballan wrasse from the British south-west. Wild-caught ballan wrasse (n = 75) from coastal populations off Dorset and Cornwall were subjected to a full health screen for viral, bacterial and parasitic infections and associated pathology. A range of metazoan and protozoan parasites were observed in histological sections, including copepods (sea lice Caligus centrodonti), nematodes, cestodes, digenean metacercariae, Cryptocaryon-like ciliates and an intestinal coccidian (Eimeria sp.) observed in 26.6% of the samples. The mycoplasma Acholeplasma laidlawii was associated with cytopathic effect in cell culture inoculated with tissue homogenates. The opportunistic pathogen Photobacterium damselae damselae was isolated from a single fish with a systemic infection. The isolate was confirmed to possess the virulence factors hlyAch and plpV, previously associated with cell toxicity and pathogenicity to fish. There are no immediate concerns for the continued mass translation of ballan wrasse, however careful monitoring of the population is recommended.


Subject(s)
Fish Diseases , Perciformes , Animals , Oceans and Seas , Scotland
10.
Environ Int ; 121(Pt 1): 1003-1010, 2018 12.
Article in English | MEDLINE | ID: mdl-29980310

ABSTRACT

It is becoming increasingly clear that the genetic diversity and abundance of antimicrobial resistance (AMR) in non-clinical settings has been underestimated and that the environment plays an integral role in enabling the development of AMR. Due to specific demographic and environmental factors the Gulf Cooperation Council (GCC) region may be particularly susceptible to the threat of AMR, with the marine and aquatic environment potentially playing a specific role in its development and propagation. The demographic factors include rapid population growth, significant international population movements, heavy antibiotic use and insufficient antibiotic stewardship. Environmental factors leading to susceptibility include notable inputs of untreated sewage effluent, high ambient water temperatures, elevated concentrations of heavy metals, and poorly regulated use of antimicrobials in veterinary settings. However, to date there is only a limited understanding of the role that this environment plays in enabling the emergence and propagation AMR in this region. This article provides an overview of the risk associated with AMR in the marine and aquatic environment in the GCC region and proposes a framework for understanding how such environments interact with the wider development and propagation of resistance. It identifies priority actions aligned with the World Health Organisation AMR Global Action Plan and associated national action plans to evaluate the role of marine and aquatic systems relative to the wider factors driving AMR emergence and propagation. The proposed framework and actions to evaluate the role of marine and aquatic environments in driving propagation and emergence of AMR are equally applicable at the regional and national level beyond the GCC.


Subject(s)
Drug Resistance, Microbial , Anti-Infective Agents , Middle East , Seawater , Water Pollution
11.
Microb Genom ; 4(9)2018 09.
Article in English | MEDLINE | ID: mdl-30040063

ABSTRACT

Renibacterium salmoninarum is the causative agent of bacterial kidney disease (BKD), which is a commercially important disease of farmed salmonids. Typing by conventional methods provides limited information on the evolution and spread of this pathogen, as there is a low level of standing variation within the R. salmoninarum population. Here, we apply whole-genome sequencing to 42 R. salmoninarum isolates from Chile, primarily from salmon farms, in order to understand the epidemiology of BKD in this country. The patterns of genomic variation are consistent with multiple introductions to Chile, followed by rapid dissemination over a 30 year period. The estimated dates of introduction broadly coincide with major events in the development of the Chilean aquaculture industry. We find evidence for significant barriers to transmission of BKD in the Chilean salmon production chain that may also be explained by previously undescribed signals of host tropism in R. salmoninarum. Understanding the genomic epidemiology of BKD can inform disease intervention and improve sustainability of the economically important salmon industry. This article contains data hosted by Microreact.


Subject(s)
Aquaculture , Micrococcaceae/isolation & purification , Salmon/microbiology , Animals , Chile , Micrococcaceae/classification , Micrococcaceae/genetics , Molecular Epidemiology , Phylogeny , Salmonidae , Whole Genome Sequencing
12.
Appl Environ Microbiol ; 84(16)2018 08 15.
Article in English | MEDLINE | ID: mdl-29884756

ABSTRACT

A multilocus variable-number tandem-repeat analysis (MLVA) assay was developed for epizootiological study of the internationally significant fish pathogen Yersinia ruckeri, which causes yersiniosis in salmonids. The assay involves amplification of 10 variable-number tandem-repeat (VNTR) loci in two five-plex PCRs, followed by capillary electrophoresis. A collection of 484 Y. ruckeri isolates, originating from various biological sources and collected from four continents over 7 decades, was analyzed. Minimum-spanning-tree cluster analysis of MLVA profiles separated the studied population into nine major clonal complexes and a number of minor clusters and singletons. The major clonal complexes could be associated with host species, geographic origin, and serotype. A single large clonal complex of serotype O1 isolates dominating the yersiniosis situation in international rainbow trout farming suggests anthropogenic spread of this clone, possibly related to transport of fish. Moreover, subclustering within this clonal complex indicates putative transmission routes and multiple biotype shift events. In contrast to the situation in rainbow trout, Y. ruckeri strains associated with disease in Atlantic salmon appear as more or less geographically isolated clonal complexes. A single complex of serotype O1 exclusive to Norway was found to be responsible for almost all major yersiniosis outbreaks in modern Norwegian salmon farming, and site-specific subclustering further indicates persistent colonization of freshwater farms in Norway. Identification of genetically diverse Y. ruckeri isolates from clinically healthy fish and environmental sources also suggests the widespread existence of less-virulent or avirulent strains.IMPORTANCE This comprehensive population study substantially improves our understanding of the epizootiological history and nature of an internationally important fish-pathogenic bacterium. The MLVA assay developed and presented represents a high-resolution typing tool particularly well suited for Yersinia ruckeri infection tracing, selection of strains for vaccine inclusion, and risk assessment. The ability of the assay to separate isolates into geographically linked and/or possibly host-specific clusters reflects its potential utility for maintenance of national biosecurity. The MLVA is internationally applicable and robust, and it provides clear, unambiguous, and easily interpreted results. Typing is reasonably inexpensive, with a moderate technological requirement, and may be completed from a harvested colony within a single working day. As the resulting MLVA profiles are readily portable, any Y. ruckeri strain may rapidly be placed in a global epizootiological context.


Subject(s)
Fish Diseases/transmission , Host Specificity , Minisatellite Repeats , Yersinia Infections/veterinary , Yersinia ruckeri/genetics , Yersinia ruckeri/pathogenicity , Animals , Fish Diseases/microbiology , Geography , Norway , Oncorhynchus mykiss/microbiology , Polymerase Chain Reaction , Salmo salar/microbiology , Serogroup , Yersinia Infections/microbiology
13.
Fish Shellfish Immunol ; 78: 355-363, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29709592

ABSTRACT

Puffy skin disease (PSD) is an emerging skin condition which affects rainbow trout, Oncorhynchus mykiss (Walbaum). The transmission pattern of PSD suggests an infectious aetiology, however, the actual causative infectious agent(s) remain(s) unknown. In the present study, the rainbow trout epidermal immune response to PSD was characterised. Skin samples from infected fish were analysed and classified as mild, moderate or severe PSD by gross pathology and histological assessment. The level of expression of 26 immune-associated genes including cytokines, immunoglobulins and cell markers were examined by TaqMan qPCR assays. A significant up-regulation of the gene expression of C3, lysozyme, IL-1ß and T-bet and down-regulation of TGFß and TLR3 was observed in PSD fish compared to control fish. MHCI gene expression was up-regulated only in severe PSD lesions. Histological examinations of the epidermis showed a significant increase in the number of eosinophil cells and dendritic melanocytes in PSD fish. In severe lesions, mild diffuse lymphocyte infiltration was observed. IgT and CD8 positive cells were detected locally in the skin of PSD fish by in situ hybridisation (ISH), however, the gene expression of those genes was not different from control fish. Total IgM in serum of diseased animals was not different from control fish, measured by a sandwich ELISA, nor was significant up regulation of IgM gene expression in PSD lesions observed. Taken together, these results show activation of the complement pathway, up-regulation of a Th17 type response and eosinophilia during PSD. This is typical of a response to extracellular pathogens (i.e. bacteria and parasites) and allergens, commonly associated with acute dermatitis.


Subject(s)
Epidermis/immunology , Fish Diseases/immunology , Fish Proteins/genetics , Gene Expression Regulation/immunology , Immunity, Innate/genetics , Oncorhynchus mykiss , Skin Diseases/veterinary , Animals , Epidermis/anatomy & histology , Female , Fish Diseases/etiology , Real-Time Polymerase Chain Reaction/veterinary , Skin Diseases/etiology , Skin Diseases/immunology
14.
Environ Int ; 117: 132-138, 2018 08.
Article in English | MEDLINE | ID: mdl-29747082

ABSTRACT

There is growing understanding that the environment plays an important role both in the transmission of antibiotic resistant pathogens and in their evolution. Accordingly, researchers and stakeholders world-wide seek to further explore the mechanisms and drivers involved, quantify risks and identify suitable interventions. There is a clear value in establishing research needs and coordinating efforts within and across nations in order to best tackle this global challenge. At an international workshop in late September 2017, scientists from 14 countries with expertise on the environmental dimensions of antibiotic resistance gathered to define critical knowledge gaps. Four key areas were identified where research is urgently needed: 1) the relative contributions of different sources of antibiotics and antibiotic resistant bacteria into the environment; 2) the role of the environment, and particularly anthropogenic inputs, in the evolution of resistance; 3) the overall human and animal health impacts caused by exposure to environmental resistant bacteria; and 4) the efficacy and feasibility of different technological, social, economic and behavioral interventions to mitigate environmental antibiotic resistance.1.


Subject(s)
Bacteria/drug effects , Drug Resistance, Bacterial , Environmental Microbiology , Animals , Anti-Bacterial Agents/pharmacology , Bacterial Infections/microbiology , Humans
15.
Appl Environ Microbiol ; 84(3)2018 02 01.
Article in English | MEDLINE | ID: mdl-29150518

ABSTRACT

One of the fastest growing fisheries in the UK is the king scallop (Pecten maximus L.), also currently rated as the second most valuable fishery. Mass mortality events in scallops have been reported worldwide, often with the causative agent(s) remaining uncharacterized. In May 2013 and 2014, two mass mortality events affecting king scallops were recorded in the Lyme Bay marine protected area (MPA) in Southwest England. Histopathological examination showed gill epithelial tissues infected with intracellular microcolonies (IMCs) of bacteria resembling Rickettsia-like organisms (RLOs), often with bacteria released in vascular spaces. Large colonies were associated with cellular and tissue disruption of the gills. Ultrastructural examination confirmed the intracellular location of these organisms in affected epithelial cells. The 16S rRNA gene sequences of the putative IMCs obtained from infected king scallop gill samples, collected from both mortality events, were identical and had a 99.4% identity to 16S rRNA gene sequences obtained from "Candidatus Endonucleobacter bathymodioli" and 95% with Endozoicomonas species. In situ hybridization assays using 16S rRNA gene probes confirmed the presence of the sequenced IMC gene in the gill tissues. Additional DNA sequences of the bacterium were obtained using high-throughput (Illumina) sequencing, and bioinformatic analysis identified over 1,000 genes with high similarity to protein sequences from Endozoicomonas spp. (ranging from 77 to 87% identity). Specific PCR assays were developed and applied to screen for the presence of IMC 16S rRNA gene sequences in king scallop gill tissues collected at the Lyme Bay MPA during 2015 and 2016. There was 100% prevalence of the IMCs in these gill tissues, and the 16S rRNA gene sequences identified were identical to the sequence found during the previous mortality event.IMPORTANCE Molluscan mass mortalities associated with IMCs have been reported worldwide for many years; however, apart from histological and ultrastructural characterization, characterization of the etiological agents is limited. In the present work, we provide detailed molecular characterization of an Endozoicomonas-like organism (ELO) associated with an important commercial scallop species.


Subject(s)
Gammaproteobacteria/genetics , Pecten/microbiology , Shellfish/microbiology , Animals , DNA, Bacterial/genetics , England , Gammaproteobacteria/isolation & purification , Gills/microbiology , Gills/pathology , Gram-Negative Bacterial Infections/epidemiology , Gram-Negative Bacterial Infections/microbiology , Gram-Negative Bacterial Infections/mortality , Metagenomics , Phylogeny , Polymerase Chain Reaction , RNA, Ribosomal, 16S/genetics , Rickettsia/genetics
16.
Vet Microbiol ; 201: 216-224, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28284613

ABSTRACT

Flavobacterium psychrophilum is one of the most important bacterial pathogens affecting cultured rainbow trout (Oncorhynchus mykiss) and is increasingly causing problems in Atlantic salmon (Salmo salar L.) hatcheries. Little is known about the heterogeneity of F. psychrophilum isolates on UK salmonid farms. A total of 315 F. psychrophilum isolates, 293 of which were collected from 27 sites within the UK, were characterised using four genotyping methods and a serotyping scheme. A high strain diversity was identified among the isolates with 54 pulsotypes, ten (GTG)5-PCR types, two 16S rRNA allele lineages, seven plasmid profiles and three serotypes. Seven PFGE groups and 27 singletons were formed at a band similarity of 80%. PFGE group P (n=75) was found to be numerically predominant in eight sites within the UK. Two major PFGE clusters and 13 outliers were found at the band similarity of 40%. The predominant profileobserved within the F. psychrophilum isolates examined was PFGE cluster II - (GTG)5-PCR type r1-16S rRNA lineage II - serotype Th (70/156 isolates examined, 45%). Co-existence of genetically and serologically heterogeneous isolates within each farm was detected, confounding the ability to control RTFS outbreaks. The occurrence over time (up to 11 years) of F. psychrophilum pulsotypes in three representative sites (Scot I, Scot III and Scot V) within Scotland was examined, potentially providing important epidemiological data for farm management and the development of site-specific vaccines.


Subject(s)
Fish Diseases/microbiology , Flavobacteriaceae Infections/veterinary , Flavobacterium/immunology , Genetic Variation , Oncorhynchus mykiss/microbiology , Salmo salar/microbiology , Alleles , Animals , DNA, Ribosomal/genetics , Electrophoresis, Gel, Pulsed-Field/veterinary , Fish Diseases/epidemiology , Flavobacteriaceae Infections/epidemiology , Flavobacteriaceae Infections/microbiology , Flavobacterium/genetics , Flavobacterium/isolation & purification , Genotype , Plasmids/genetics , Polymerase Chain Reaction/veterinary , Scotland/epidemiology , Serotyping/veterinary , United Kingdom/epidemiology
17.
FEMS Microbiol Ecol ; 93(4)2017 04 01.
Article in English | MEDLINE | ID: mdl-28199699

ABSTRACT

Bacteria from the family Flavobacteriaceae often show low susceptibility to antibiotics. With the exception of two Chryseobacterium spp. isolates that were positive for the florfenicol resistance gene floR, no clinical resistance genes were identified by microarray in 36 Flavobacteriaceae isolates from salmonid fish that could grow in ≥ 4 mg/L florfenicol. Whole genome sequence analysis of the floR positive isolates revealed the presence of a region that contained the antimicrobial resistance genes floR, a tet(X) tetracycline resistance gene, a streptothricin resistance gene and a chloramphenicol acetyltransferase gene. In silico analysis of 377 published genomes for Flavobacteriaceae isolates from a range of sources confirmed that well-characterised resistance gene cassettes were not widely distributed in bacteria from this group. Efflux pump-mediated decreased susceptibility to a range of antimicrobials was confirmed in both floR positive isolates using an efflux pump inhibitor (phenylalanine-arginine ß-naphthylamide) assay. The floR isolates possessed putative virulence factors, including production of siderophores and haemolysins, and were mildly pathogenic in rainbow trout. Results support the suggestion that, despite the detection of floR, susceptibility to antimicrobials in Flavobacteriaceae is mostly mediated via intrinsic mechanisms rather than the horizontally acquired resistance genes more normally associated with Gram-negative bacterial pathogens such as Enterobacteriaceae.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Chryseobacterium/drug effects , Chryseobacterium/genetics , Oncorhynchus mykiss/microbiology , Thiamphenicol/analogs & derivatives , Acetyltransferases/genetics , Animals , Carrier Proteins/antagonists & inhibitors , Carrier Proteins/genetics , Chloramphenicol O-Acetyltransferase/genetics , Chryseobacterium/isolation & purification , Genome, Bacterial/genetics , Hemolysin Proteins/biosynthesis , Humans , Microbial Sensitivity Tests , Phenylalanine/analogs & derivatives , Phenylalanine/pharmacology , Polymerase Chain Reaction , Siderophores/biosynthesis , Tetracycline Resistance/genetics , Thiamphenicol/pharmacology , Virulence Factors/biosynthesis
18.
J Antimicrob Chemother ; 72(6): 1617-1623, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28175320

ABSTRACT

Objectives: Effluents contain a diverse abundance of antibiotic resistance genes that augment the resistome of receiving aquatic environments. However, uncertainty remains regarding their temporal persistence, transcription and response to anthropogenic factors, such as antibiotic usage. We present a spatiotemporal study within a river catchment (River Cam, UK) that aims to determine the contribution of antibiotic resistance gene-containing effluents originating from sites of varying antibiotic usage to the receiving environment. Methods: Gene abundance in effluents (municipal hospital and dairy farm) was compared against background samples of the receiving aquatic environment (i.e. the catchment source) to determine the resistome contribution of effluents. We used metagenomics and metatranscriptomics to correlate DNA and RNA abundance and identified differentially regulated gene transcripts. Results: We found that mean antibiotic resistance gene and transcript abundances were correlated for both hospital ( ρ = 0.9, two-tailed P <0.0001) and farm ( ρ = 0.5, two-tailed P <0.0001) effluents and that two ß-lactam resistance genes ( bla GES and bla OXA ) were overexpressed in all hospital effluent samples. High ß-lactam resistance gene transcript abundance was related to hospital antibiotic usage over time and hospital effluents contained antibiotic residues. Conclusions: We conclude that effluents contribute high levels of antibiotic resistance genes to the aquatic environment; these genes are expressed at significant levels and are possibly related to the level of antibiotic usage at the effluent source.


Subject(s)
Drug Resistance, Microbial/genetics , Gene Expression , Hospitals , Wastewater/microbiology , Water Microbiology , Anti-Bacterial Agents/pharmacology , Bacteria/genetics , Dairying , Farms , Gene Expression Profiling , Genes, Bacterial , Humans , Metagenomics , Rivers/microbiology , Spatio-Temporal Analysis , beta-Lactam Resistance/genetics
19.
Front Microbiol ; 8: 121, 2017.
Article in English | MEDLINE | ID: mdl-28217117

ABSTRACT

Aquaculture is the fastest growing food-producing sector, and the sustainability of this industry is critical both for global food security and economic welfare. The management of infectious disease represents a key challenge. Here, we discuss the opportunities afforded by whole genome sequencing of bacterial and viral pathogens of aquaculture to mitigate disease emergence and spread. We outline, by way of comparison, how sequencing technology is transforming the molecular epidemiology of pathogens of public health importance, emphasizing the importance of community-oriented databases and analysis tools.

20.
PLoS One ; 11(7): e0158151, 2016.
Article in English | MEDLINE | ID: mdl-27391648

ABSTRACT

The transmission of puffy skin disease (PSD) to rainbow trout Oncorhynchus mykiss Walbaum was tested in the laboratory by conducting co-habitation challenges with puffy skin (PS)-affected fish (Trojans) collected from the field. Two separate challenges were conducted using Trojans sourced from two different sites and diploid (first trial) or triploid (second trial) naïve fish. PSD-specific clinical signs were observed in both groups of naïve fish, with 66% of the fish sampled during the challenges showing signs of varying severity. The first clinical features of PSD were presented as white oval skin patches on one or both flanks 15-21 days post-challenge (dpc). The extent of the lesions ranged from 10 to 90% of the body surface, depending on the severity of the lesion. Both the severity and number of affected fish increased during the challenge. Macroscopically, oedema of the skin and multifocal petechial haemorrhaging were observed towards the end of the trials. Abnormal fish behaviour consisting of "flashing" and excessive mucous production was noted from 15 dpc onwards. Fish with severe PSD lesions also displayed inappetence and associated emaciation. Rodlet cells were observed in 41% of the fresh skin scrapes analysed from the second trial. Histologically epidermal oedema was observed in 31% of the naive fish showing gross pathology, with additional 12% displaying epidermal hyperplasia, mostly observed at the end of the challenge. Other concomitant features of the PSD lesions in challenged fish were epithelial erosion and sloughing, and occasionally mild or focal inflammation. No consistent pathology of internal organs was observed. The parasites Ichthyophthirius multifiliis and Ichthyobodo necator were observed in skin samples of a proportion of naïve challenged fish and in Trojans but not in control fish. The presence of these and other known fish pathogens in the skin of PSD-fish was confirmed by high-throughput sequencing analysis. In summary, we have demonstrated that PSD is a transmissible condition. However, even though a number of known fish pathogens were identified in the skin tissues of PSD-fish, the actual causative infectious agent(s) remain(s) unknown.


Subject(s)
Fish Diseases/parasitology , Hymenostomatida , Oncorhynchus mykiss/parasitology , Skin Diseases/veterinary , Animals , Female , Fish Diseases/microbiology , Fish Diseases/virology , Hemorrhage/physiopathology , Mucus , Oncorhynchus mykiss/microbiology , Oncorhynchus mykiss/virology , Skin/physiopathology , Skin Diseases/microbiology , Skin Diseases/parasitology , Skin Diseases/virology , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL